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Computational and neural 
signatures of pre and post-sensory 
expectation bias in inferior 
temporal cortex
Kyle Dunovan   1,2 & Mark E. Wheeler3

As we gather noisy sensory information from the environment, prior knowledge about the likely 
cause(s) of sensory input can be leveraged to facilitate perceptual judgments. Here, we investigated 
the computational and neural manifestation of cued expectations in human subjects as they performed 
a probabilistic face/house discrimination task in which face and house stimuli were preceded by 
informative or neutral cues. Drift-diffusion modeling of behavioral data showed that cued expectations 
biased both the baseline (pre-sensory) and drift-rate (post-sensory) of evidence accumulation. By 
employing a catch-trial functional MRI design we were able to isolate neural signatures of expectation 
during pre- and post-sensory stages of decision processing in face- and house-selective areas of inferior 
temporal cortex (ITC). Cue-evoked timecourses were modulated by cues in a manner consistent with 
a pre-sensory prediction signal that scaled with probability. Sensory-evoked timecourses resembled a 
prediction-error signal, greater in magnitude for surprising than expected stimuli. Individual differences 
in baseline and drift-rate biases showed a clear mapping onto pre- and post-sensory fMRI activity in 
ITC. These findings highlight the specificity of perceptual expectations and provide new insight into 
the convergence of top-down and bottom-up signals in ITC and their distinct interactions prior to and 
during sensory processing.

Prior knowledge plays a pivotal role in shaping perception - placing contextual constraints on the interpretation 
of sensory inputs to facilitate fast, accurate detection of expected stimuli. Recent evidence suggests that expec-
tations and other forms of top-down information exert bias over the processing of lower level sensory inputs at 
much earlier stages than previously thought. For instance, functional imaging studies in humans have found 
that category-selective regions of inferior temporal cortex (ITC) exhibit activation patterns more consistent with 
the accumulation of decision evidence than with raw sensory representation1. Studies of top-down signaling 
in ITC have generated support for predictive coding (PC) theories of perception, which assume that internal 
expectations are represented hierarchically, from abstract/categorical representations in frontal cortex down to 
feature-level stimulus templates in the relevant areas of sensory cortex2. These low-level feature predictions not 
only prime sensory cortex for faster feature detection, but also allow the brain to refine its internal model by prop-
agating sensory prediction errors back up to higher-order regions (e.g., prefrontal cortex). Empirical evidence 
for PC has largely come from human neuroimaging studies showing that, in relevant parts of sensory cortex, 
stimulus-evoked activity is weaker when a stimulus is expected compared to when it comes as a surprise3. This 
“prediction error” signal has proven to be highly reliable in perceptual decision making studies across visual4,5, 
auditory6,7, tactile8,9, and olfactory10 domains. Fewer studies, however, have focused on how expectations are 
represented in sensory cortices prior to sensory input.

Bell et al.11 found compelling evidence for the emergence of expectations in population-level activity in 
inferior temporal cortex (ITC) as monkeys learned the relative probability of face and fruit stimuli. Critically, 
they showed that face expectations were associated with an increase in the firing rate of a particular subset of 
face-selective neurons. Stimulus-evoked activity, on the other hand, was greater for surprising stimuli – con-
sistent with a prediction error signal. Empirical support for PC in humans is mostly drawn from the observed 
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modulatory effects of expectations on stimulus-evoked activity (e.g., the prediction-error) whereas relatively less 
is known about the preceding manifestation of the prediction itself. Kok et al.12 found compelling, albeit indirect, 
evidence for top-down predictions in visual cortex – showing that the omission of an expected stimulus elicited 
a greater response than actually viewing an expected stimulus. Similar to the findings of Bell et al.11, Puri et al.13 
showed that cued face expectations were associated with an increase in fusiform activation in human subjects 
performing a face/house discrimination task. However, counter to a PC account, these authors observed a larger 
stimulus evoked response for expected than unexpected faces, Puri et al., concluded that, in addition, to priming 
sensory populations, prior expectations also serve to amplify the response to anticipated stimuli. Here we sought 
to reconcile the findings reported by Puri et al.13 with the growing body of evidence for PC theories by addressing 
a design flaw in their original study. Due to the sluggish nature of the blood oxygenation-level dependent (BOLD) 
signal measured by fMRI, it is possible that the amplified response to expected stimuli observed by Puri et al.13 
was actually the result of carryover activity from the prior prediction signal.

In addition, we leveraged a well-known model of decision making, the drift-diffusion model (DDM), to 
formally characterize the behavioral effects of probabilistic cues on pre- and post-sensory decision evidence. 
The DDM assumes that perceptual decisions are made by accumulating noisy sensory evidence between two 
decision boundaries, each representing the criterion evidence for committing to a categorical choice. While 
accumulation-to-bound and PC theories offer different levels of description for perceptual decision phenomena, 
both frameworks explicitly assume that perceptual decisions arise from a combination of pre- and post-sensory 
information processing. In a previous study using the same probabilistic face/house task as used in the current 
study, fits of the DDM to behavioral data showed that cues led to biases in both the baseline evidence (e.g., 
pre-sensory) and rate of evidence accumulation (e.g., post-sensory). Thus, a further aim of the current study 
was to replicate our previous modeling results and to determine how biases in parameters of the DDM map 
onto pre- and post-sensory effects of cued expectations in category-selective ITC. We hypothesized that behav-
iorally derived starting-point estimates of the DDM should reflect the strength of prediction signals (e.g., with 
greater starting-point bias in conditions with greater cue-evoked activation); whereas drift-rate estimates should 
reflect the match between predicted and observed sensory inputs (e.g., with higher drift-rates in conditions 
with lower sensory-evoked activation). To investigate this hypothesis we collected behavioral and fMRI data 
from human subjects as they performed a probabilistic face/house discrimination task14 (Fig. 1) and compared 
behaviorally-derived estimates of bias in parameters of the DDM to cue- and sensory-evoked BOLD activity in 
face- and house-selective regions of ITC.

Figure 1.  Probabilistic face/house discrimination task. On full trials (top) subjects were shown a cue (letter 
number combination over noise-only movie; red border) informing them of the prior probability of each 
stimulus category, followed by a noise-degraded movie of either a face or house stimulus (green border), and 
finally a jittered rest period (noise-only movie; gray border). On catch trials (bottom), subjects were shown a 
cue followed immediately by a rest period and were instructed to wait for the next trial.
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Results
Behavioral Performance.  Human subjects performed a probabilistic face/house discrimination task in 
which a preceding cue indicated the prior probability (80% or 50%) of an upcoming stimulus being a face or 
house (noise-degraded movie; see Online Methods; see Fig. 1). In the analyses, trials were sorted by cue type 
(80F, 50N, 80H), stimulus (face, house) and accuracy (correct, incorrect). Notably, almost all behavioral effects 
(Fig. 2) were consistent with our previous results14. The interaction between cue and stimulus was significant as 
a predictor of both accuracy (F(1.36, 24.94) = 9.58, p < 0.001) and RT (F(1.50, 27.02) = 16.84, p < 0.001) demon-
strating that while cues were effective in influencing behavior, face and house discriminations were differentially 
modulated by cued expectations.

Several category-specific effects of expectation on face/house accuracy were replicated from previous work14, 
including a significant main effect of cue (F(1.32, 23.79) = 4.63, p < 0.03), but not task stimulus (F(1, 18) = 2.291, 
p = 0.15), on choice accuracy (see Fig. 2a). Consistent with our previous behavioral findings, face expectations 
strongly influenced house accuracy, whereas house expectations had relatively little impact on face accuracy. 
However, in contrast with our past study14, we found a significant accuracy advantage of house over face stimuli 
in the neutral (50%) cue condition (t(18) = 2.88, p = 0.01), suggesting a response bias for the house category. The 
main effects of cue (F(1.99, 35.93) = 14.92, p < 0.0001) and stimulus (F(1, 18) = 115.41, p < 0.0001) on RT were 
also consistent with our previous findings, such that RT for each category was influenced by cued expectations, 
and correct face responses were significantly faster than correct house responses, regardless of cue (Fig. 2b).

Figure 2.  Observed and model-predicted effects of cued expectations on behavior. Average (a) accuracy and 
(b) RT (correct only) of face (dark blue line) and house (dark red line) decisions plotted as a function of cue 
type across subjects (N = 19). Model-predicted accuracy and RT data for each stimulus category are shown 
as overlays (face: transparent blue; house: transparent red), each line corresponding to predictions from one 
of 100 simulated datasets. Each simulated dataset was generated using the subject-level parameter estimates 
of the hierarchical MSM model and contained the same trial count per condition as in the actual experiment 
to capture predicted estimates of variability. (c) Observed (filled) and model-predicted (dashed line) RT 
distributions for face (blue, top) and house (red, bottom) stimuli, plotted separately for invalid (lighter), neutral, 
and valid (darker) cued expectations. Error RTs are flipped on the x-axis (left of vertical gray line). Correct RTs 
are plotted as positive values (right of vertical gray line). (d) Schematic showing the effects of valid and invalid 
prior cues on starting point and drift rate parameters. Posterior probability distributions for (e) starting point 
(zcue), (f) face drift-rate (vF), and (g) house drift-rate (vH) estimates in the 80F (Face, blue), 50N (Neutral, gray), 
and 80H (House, red) cue conditions. Error bars in panels (a,b) show the 95% c.i. around the mean. Inset plots 
in panels (e–g) show the mean and 95% c.i. of the posterior probability distribution for each of the cues.
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Comparison of Model Fits.  Next, we tested whether the observed behavioral biases were best supported by 
changes in the starting point (prior bias model: PBM), or drift-rate (dynamic bias model: DBM), or by changes 
in both parameters (multistage model: MSM). Consistent with our previous findings14, we found that, com-
pared to fits of the PBM (DIC = 26723.87, Deviance = 26,593.57, pD = 130.30) and DBM (DIC = 26,708.33; 
Deviance = 26,666.99, pD = 41.33), the observed behavioral effects were best explained by the MSM despite the 
larger complexity penalty (DIC = 26,654.92, Deviance = 26,448.90, pD = 206.02). To ensure that the MSM pro-
vided reasonable qualitative predictions of the observed effects of cue validity on the mean accuracy and RT 
estimates shown in Fig. 2a,b, we overlaid the predicted values of each measure for 100 simulated datasets, each 
generated by concatenating simulated datasets for each subject based on their estimated parameters. Indeed, 
model predictions (transparent lines in Fig. 2a,b) fell within the 95% confidence intervals of all observed means 
for both accuracy and RT, providing additional support for combined expectation bias in the starting-point and 
drift-rate parameters. Finally, as a more direct assessment of goodness-of-fit, we compared the shape of observed 
and model-predicted RT distributions on correct and error trials for each category and across cue-type (Fig. 2c). 
Again, the high degree of similarity between observed and predicted RT distributions across all conditions bol-
sters our previous findings14 and current conclusions favoring a multi-stage mechanism by which prior infor-
mation biases both the starting point (e.g., pre-sensory) and drift-rate (e.g., post-sensory) of visual category 
discriminations.

Based on our previous findings14, we next tested the following hypotheses: (1) Probabilistic cues will shift 
the starting point closer to the expected category boundary, “upwards” for face expectations and “downwards” 
for house expectations, relative to the neutral condition. (2) Starting-point estimates will reflect a general bias in 
favor of the face category, suggesting a stronger weighting of the prior than of sensory information for face deci-
sions. (3) Face drift-rates will be higher following valid compared to invalid and neutral cues; whereas (4) house 
drift-rates will be lower on invalid compared to valid and neutral cues.

A comparison of the posterior distributions for the starting-point estimates in each of the cue conditions sup-
ported hypotheses 1 and 2 (Fig. 2e). Relative to the starting-point in the neutral condition (zn = 0.66), house cues 
caused a significant downwards bias in the starting point (P(zh < zn) = 0.99), whereas the upwards bias caused by 
face cues was only marginally significant (P(zf > zn) = 0.91). However, in line with hypothesis 2, all starting-point 
estimates fell above the midpoint between boundaries (zall > ½a), implying that subjects were generally biased 
towards expecting faces, with the strength of this bias modulated by cue type.

To ease interpretation and comparison of cue effects on drift-rates between categories, all tests were per-
formed on the absolute values of the drift-rate (e.g., higher numbers always reflect faster drift-rates). In contrast 
to our previous findings (see hypothesis 3 above), we found that the drift-rate for face stimuli (Fig. 2f) was not 
significantly modulated by the preceding cue (P(vfF > vnF) = 0.48; P(vfF > vhF) = 0.77). However, consistent with 
hypothesis 4, the drift-rate for house stimuli (Fig. 2g) was significantly slowed following face cues, compared to 
trials with neutral cues (P(vfH < vnH) = 0.98) and valid house cues (P(vfH < vhH) = 0.99. Furthermore, consistent 
with our previous findings, valid house expectations did not improve house drift-rates compared to the neutral 
condition (P(vhH < vnH) = 0.58). Overall, these findings support our hypotheses and closely match the observed 
starting-point and drift-rate dependencies on prior face and house expectations reported in an earlier study that 
used the same face/house discrimination task14.

Imaging Results.  Because of their involvement in evidence accumulation during face/house discrimination1, 
analysis of fMRI data focused on face- and house-selective regions of interest (ROI) in ITC, localized individu-
ally for each subject (see Methods). The task used two types of trial to permit a clean separation of cue-evoked 
and task-evoked fMRI data15. Full trials included both the cue and stimulus, and catch trials included only the 
cue. We extracted cue- and stimulus-evoked timecourses from face-preferential (Fig. 3a) and house-preferential 
ROIs (Fig. 3c) for each subject based on two different GLMs. The “separated-events” GLM separated cue and 
stimulus events using a cue-locked regressor for each cue-type (including cues from catch and full trials) and 
stimulus-locked regressors for each stimulus-type. The “combined-events” GLM included a cue-locked regressor 
for each cue-type on catch trials only, and a cue-locked regressor for each cue-stimulus combination on full trials. 
The purpose of the combined-events GLM was primarily to validate the effectiveness of the separated-events 
GLM. We also ran a second version of the separated-events GLM, in which stimulus events were coded by Fast 
(>median) and Slow (<median) RTs, to attempt to replicate the finding that the rising slope of the BOLD signal 
in ITC was steeper on Fast than Slow RT trials, a pattern that is consistent with an accumulation-to-boundary 
account (see Supplementary Materials)1,16.

Collapsing across the three cue regressors in the separated-events GLM, we extracted the stimulus-locked 
timecourse for Face and House stimuli to visualize the categorical preference for each set of regions. The face- 
and house-selective regions from all subjects are shown in Fig. 3a,c. As expected because of the contrast defining 
the ROIs, activation in face-selective regions showed a stronger positive deflection on Face than House trials 
(F(1,18) = 43.52, p < 0.0001; Fig. 3b). In contrast, the main effect of stimulus in house-selective regions was driven 
by a positive deflection from baseline on House trials and a negative deflection on Face trials (F(1,18) = 39.45, 
p < 0.0001; Fig. 3d).

Effects of expectations on cue- and stimulus-evoked activity.  Based on our previous study of prior 
expectations on face vs. house discrimination14, and on the parameter estimates in the MSM, we had specific a 
priori hypotheses about the cue-evoked activity in face- and house-selective regions of ITC. We predicted that 
face-selective regions would show stronger activity in the cue phase as the prior probability of a face stimulus 
increased, whereas house-selective regions would not reflect expectation-related activity in the cue phase. To 
test these predictions, we examined cue-evoked activity in face- and house-selective regions (Fig. 4a), as well 
as the peak magnitudes of cue-evoked activity in face and house-selective regions from the separated- and 
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combined-events GLMs (Fig. 4b,c). Note that, due to the nature of the catch-trial design, there were far fewer 
catch-cue trials and thus fewer events in the combined GLM cue regressor than that of the separate GLM. In spite 
of this, the cue-evoked peaks estimated for the two model types were highly similar in face- and house-selective 
regions (Fig. 4b,c) indicating that the catch-trial design added sufficient variability between cue and stimulus 
events to isolate activation specific to each phase of the trial. The subject-wise peak magnitude for each cue type 
on catch and full trials was also highly correlated in face-selective (all r > 0.88, p < 0.0001) and house-selective 
regions (all r > 0.73, p < 0.0003), providing confirmatory evidence that the catch-trial design successfully iso-
lated cue- from stimulus-evoked activity. Thus, all remaining analyses were conducted on data derived from the 
separated-events GLMs.

Cue-dependent time series data from face- and house-selective regions are shown in Fig. 4a. Only correct 
trials are included. Valid trials are those in which the cue and stimulus matched, invalid trials are non-matches 
(e.g., in an Invalid Face trial, an 80H cue is followed by Face stimulus). Consistent with our model-based predic-
tions, the peak magnitude of cue-evoked activity in face-selective ITC (Fig. 4b) showed a pattern consistent with 
the mean starting-point estimates across cue types (e.g., house cue < neutral cue < face cue; see Fig. 2e). Face 
cues evoked a significantly greater peak magnitude of activation than house cues (all trials, Fig. 5c: t(18) = 3.26, 
p = 0.004; catch-trials, Fig. 5e: t(18) = 2.88, p = 0.01), but not neutral cues (all trials, Fig. 5b; t(18) = 0.64, p > 0.05; 
catch-trials, Fig. 5c: t(18) = −0.26, p > 0.05). Moreover, in line with the general face bias observed starting-point 
estimates, cue-evoked peak activation magnitudes for all cue types were significantly greater than baseline in 
face-selective regions (all p < 0.0001). House-selective regions in ITC showed a small positive deflection during 
the cue phase that was equal in magnitude for house- and face-predicting cues (Fig. 4d).

The pattern of stimulus-evoked activations from the separated events GLM in face- and house-selective 
regions (Fig. 5a) was consistent with model-based predictions, with unexpected stimuli evoking stronger 
responses than expected stimuli (Fig. 5d) in the corresponding area of ITC. To test the interaction between 
cued expectations and observed stimuli, we performed a 2 (Stimulus: Face, House) × 3 (Cue: House, Neutral, 
Face) repeated measures ANOVA on peak stimulus-evoked magnitudes extracted from face and house ROIs 

Figure 3.  Category-selective regions and activity in ITC. (a) Face-selective ROIs, shown as a single contiguous 
cluster including all individual subject-localized face ROIs (N = 19). The average face-selective ROI across 
subjects was 349.73 voxels (SEM = 59.02). (b) Average timecourse of stimulus-evoked activity in face ROIs on 
correct face (blue) and house (red) trials. (c) House-selective ROIs (M = 364.32 voxels, SEM = 68.29) and (d) 
stimulus activation timecourses in house ROIs with same plotting conventions as in (b). Surface mapping was 
performed with Caret45 and the SuMS database46. Shaded area reflects +/−1 s.e.m.
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(separated-events GLM). Indeed, a significant interaction was detected in both face (F(2,36) = 3.46, p = 0.04) 
and house-selective (F(2,36) = 7.19, p = 0.002) regions, indicating that stimulus-evoked responses in both 
sub-regions of ITC were modulated by the preceding cue. The observed interaction in face ROIs is consistent 
with a predictive coding (PC) account in which the sensory response to a face stimulus is suppressed by valid 
face expectations (Fig. 5d). Interestingly, house-selective regions reflected expectation-related modulations in 
activity for both stimulus types, with unexpected faces evoking a stronger negative deflection than expected faces 
(t(18) = 4.74, p = 0.0002) and unexpected houses evoking a stronger positive deflection than expected houses 
(Fig. 5d; t(18) = 3.15, p = 0.006).

Discussion
The primary aim of this study was to investigate the pre- and post-stimulus manifestation of probabilistic expec-
tations in category selective areas of ITC, using a cuing paradigm to disambiguate signals related to top-down 
predictions and bottom-up prediction-errors. To this end, we leveraged computational modeling to quantify the 
effects of probabilistic cues on the baseline and rate of evidence accumulation in a face-house discrimination task 
and compared these estimates with cue- and stimulus-evoked neural activity measured by fMRI. In line with our 
main hypothesis, probabilistic cues led to a pre-stimulus prediction signal in category-selective ITC that increased 
with the strength of expectations, followed by a stimulus-evoked prediction-error signal that diminished with 
stronger expectations. The results are consistent with the role of bias in an accumulation-to-boundary account of 

Figure 4.  Effects of expectations on cue-phase activity. (a) Timecourse of activity (12 × 1.5 s) in face (blue, left) 
and house (red, right) ROIs time-locked to 1 TR before cue onset, estimated from from catch trials and full trials 
in the separate events GLM. Peak magnitude of activity plotted for each cue type in (b) face and (c) house ROIs 
based on estimates from the separate events GLM (circle markers; darker colors) and combined events GLM 
(square markers; lighter colors). (d) Peak difference in cue-evoked activity for region-preferred cues versus non-
preferred cues in face (blue) and house (red) ROIs. Shaded area around mean timecourses reflect +/−1 s.e.m. 
Error bars in point plots reflect 95% c.i. around the mean.
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information processing in which expectations modulate the magnitude of activation prior to the appearance of 
the stimulus, moving it closer to or further from a hypothetical decision boundary17.

Over the past decade, perceptual decision-making research has made clear the importance of expectations. 
Informative cues given prior to a perceptual judgment give rise to preparatory neural activity in task-relevant 
sensory13,15, motor18–20, and associative21,22 cortices. Interestingly, a number of neuroimaging studies have found 
that prior expectations often have the opposite effect on stimulus-evoked activity, suppressing the response to 
predictable stimuli and amplifying the response to surprising ones. PC theories posit that the amplified response 
to surprising stimulus reflects the error between predicted and observed sensory features. Unfortunately, because 
of the low temporal resolution of fMRI it has proven difficult to dissociate activity related to the prediction error 
from activity related to the prediction itself. As a result, most evidence supporting PC comes from sensory-evoked 
patterns in stimulus specific areas of cortex whereas relatively little is known about how expectations affect these 
areas prior to stimulus onset. Moreover, in the few imaging studies that have identified prediction-related signals 

Figure 5.  Effects of expectations on stimulus-phase activity. (a) Timecourse of activity (12 × 1.5 s) in face (blue, 
left) and house (red, right) ROIs time-locked to 1 TR before stimulus onset estimated from full trials in the 
separate events GLM. (b) Peak face-evoked activity in face-selective ROIs across cue types based on the separate 
events GLM (circle markers; darker shades) and combined events GLM (square markers; lighter shades). 
(c) Peak house-evoked activity in house-selective regions with same plotting conventions as in b. (d) Peak 
difference in stimulus-evoked activity following valid versus invalid expectations in face (e.g., left; blue error 
bars) and house (e.g., right; red error bars) ROIs. Negative values imply suppression of stimulus-evoked activity 
when cued expectations are valid. Shaded area around mean timecourses reflect +/−1 s.e.m. Error bars in point 
plots reflect 95% c.i. around the mean.
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in sensory cortex13,15, the subsequent stimulus-evoked response has been found to be amplified, not suppressed, 
by valid expectations.

For instance, Puri et al.13 measured brain activity using fMRI during a cued face/house discrimination task 
which differed from the current study in that predictive cues were followed by a constant six second delay before 
stimulus onset. Similar to the findings presented here, these authors observed a cue-evoked baseline shift in 
face-selective ITC, greater when a face was explicitly expected. However, in contrast with the results of the cur-
rent study13, they found that activity aligned to the onset of the stimulus was greater in face- and house-selective 
regions when expectations were validated by the region-preferred stimulus. Thus, prior expectations amplified 
rather than suppressed stimulus-evoked activity in face and house-selective areas of ITC. One explanation for this 
discrepancy is that, due to the regular (i.e., un-jittered) interval between cue and stimulus events in Puri et al.13, 
the amplified activity following expected stimuli could reflect residual activity from the cue-phase. The catch-trial 
design employed in the current study allowed us avoid this potential confound, providing a reliable dissociation 
of cue- and stimulus-evoked activity. Consistent with a PC interpretation, we observed that category-preferential 
regions of ITC displayed a greater response to surprising than to expected stimuli. In face-selective ITC, this 
apparent prediction error signal was preceded by an increase in activity proportional to the cued probability of 
a face. Together, these findings suggest that, at least in some cases, the amplified response to surprising sensory 
input reflects a greater discrepancy between the expected and observed features of a stimulus.

We should note that the expectation-enhancing effects observed by Puri et al.13 are not necessarily artefactual, 
and, in fact, there is good reason to believe that stimulus processing involves concurrent prediction and surprise 
signals throughout the visual hierarchy11,23. According to this view, valid expectations would correspond to an 
increase in the signal of prediction units but a decrease in the signal of surprise units. Based on a computational 
model aimed at decomposing the relative contribution of these two mechanisms, Egner and colleagues4 estimated 
roughly a 2:1 ratio of surprise to prediction units within a given region (see also Supplementary Fig. 3). Thus, even 
though expectation suppression is thought to be more prevalent, there are a number of methodological differ-
ences between studies that may account for the observation of expectation enhancement. As mentioned above, 
one working hypothesis23,24 is that, in the context of valid expectations, enhanced stimulus-evoked responses 
reflect carryover of the top-down prediction signal, driving an increase in the BOLD signal that extends into the 
stimulus phase. Still, expectation enhancement has also been observed in fMRI studies, such as this one, that use 
a catch trial design to isolate cue- and stimulus-evoked signals15. One possibility is that the apparent amplifying 
effect of expectations on sensory signals in these studies is the result of attentional gain on task-relevant predic-
tion errors25–27, offsetting the effect of error suppression.

The findings of the current study are largely in line with the assumptions of PC theories, and, perhaps more 
importantly, they also point to certain benefits of accumulation-to-bound models. For instance, PC theories are 
generally agnostic about processing duration and do not offer a straightforward account for the RT-dependent 
rise of activity in ITC observed in this (see Supplementary Fig. 1) and a previous study1, in which faster decisions 
correspond to a steeper rising slope and earlier onset of decay compared to slower decisions. One possibility is 
that ITC is only active as long as the information it is propagating forward is goal-relevant – that is, until sufficient 
evidence has been accumulated to commit to a choice1,16 – implicating ITC in the accumulation of sensory evi-
dence during goal-directed behavior, as opposed to simply responding to bottom-up sensory inputs. To this point, 
it is important to note that all trials lasted 6 sec, and stimuli remained on screen throughout the trial regardless of 
when the response was made. Despite all trials involving the full 6 sec duration of sensory stimulation, face and 
house-selective regions exhibited both a steeper slope and an earlier decay in activation on trials with fast com-
pared to slow RTs (see Supplementary Fig. 1c). Additionally, behaviorally-derived biases in the starting-point and 
drift-rate parameters provided category-idiosyncratic predictions of mean cue- and stimulus-evoked activation in 
face- and house-selective regions, and were correlated with cue and stimulus-evoked magnitudes across individ-
ual subjects (see Supplementary Fig. 2). At the group level, cues manifested in varying degrees of face bias in the 
starting-point (e.g., zf > zn > zh; zall closer to the face boundary) and pre-stimulus BOLD activity in face -selective 
regions. In contrast, expectations selectively biased the drift-rate of house decisions and led to a more pronounced 
modulation of stimulus-evoked activity in house-selective, compared to face-selective, regions. Other findings, 
however, do not appear to be well explained by either theoretical framework. For instance, stimulus-evoked 
activity in house-encoding regions displayed the same interaction between expected and observed input as 
face-selective regions, despite the apparent lack of an explicit “house” expectation signal in the cue phase (see 
Fig. 4a). One possibility is that prediction-error signals are not necessarily dependent on the existence of an 
explicit prediction template in the same region, and may arise from comparison between local sensory afferents 
and another source of top-down or lateral feedback.

In line with previous findings14,28, several observations in the current study suggest that these category-specific 
forms of bias may have resulted from strategic differences in the way subjects treated face and house stimuli 
– recasting the face-house discrimination as a match (face)/mismatch (house) judgment, or face/not-face. 
First, we found no evidence that subjects formed explicit house predictions in either in cue-evoked activity 
of house-selective areas (Fig. 4a) or in starting-point estimates of the DDM (Fig. 2d). Secondly, in line with 
our previous findings, house decisions were associated with stronger overall drift-rates than face decisions 
(P(vH > vF) ≥ 0.995 for all cues). In a face/not-face scenario, the drift-rate on correct “mismatch” (e.g., house) tri-
als is driven by two sources of evidence (e.g., house evidence + noise), compared to the single source of evidence 
available on correct “match” trials (e.g., face evidence). Finally, the negative signal deflection on correct face trials 
in house-selective regions (Fig. 5a) was proportional to, and slightly lagged behind, the activation in face selective 
regions. This pattern is consistent with a face-centric decision strategy in which house evidence (as indexed by the 
moment-to-moment level of activation in house-preferential regions) is reactively suppressed when surprising 
face inputs are detected, increasing in strength as the magnitude of the face prediction error increases. Finally, we 
estimated the relative contribution of prediction and error units to BOLD activation in both category-selective 
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ITC regions by fitting the predictive coding model proposed by Egner et al.4 to event-related peaks extracted 
from the combined-events GLM (e.g., cue and stimulus phases coded as single cue-locked events). Model fits 
were largely consistent with the patterns reported in Egner et al.4 for both face- and house-selective ROIs, both 
regions displaying a stronger contribution of error, compared to prediction, units to the aggregate cue-stimulus 
response (see Supplementary Fig. 3). Consistent with our above interpretation that top-down expectations were 
stronger for the face category, face-selective regions displayed a stronger contribution from prediction units than 
did house-selective regions (see Supplementary Materials for additional details).

In conclusion, these findings provide insight into the probabilistic nature of neural prediction signals and 
their influence on the processing of subsequent sensory inputs in category selective regions of ITC, and how 
this interaction drives behavioral choice. It has become increasingly clear that decision-making computations 
are widely distributed throughout the brain29,30 (see Supplementary Fig. 4 and Supplementary Table 1 for a sum-
mary of whole brain cue and stimulus effects), involving complex circuit- and network-level dynamics that are 
abstracted, but ultimately unaccounted for, by accumulator models like the DDM21,31. Still the DDM provides 
a parsimonious, mechanistic account of decision-making that is capable of describing both RT and accuracy32 
with reliable, identifiable33 parameter dependencies. On the other hand, sufficiently detailed accounts of PC2,34 
offer a more biologically plausible set of predictions for guiding experimental investigation of the neural mech-
anisms underlying parameter changes in the diffusion model. However, increasing biological plausibility means 
sacrificing behavioral tractability; thus, it is of interest to theoreticians at the cognitive (algorithmic) and neural 
(implementation) levels to identify points of compatibility between these two promising frameworks.

Materials and Methods
Subjects.  Twenty-four healthy (n = 24), right-handed, native English speakers with normal or correct-
ed-to-normal vision participated in a 1.5-hour behavioral and functional magnetic resonance imaging (fMRI) 
session. Five subjects were excluded for incomplete scan data (N = 3) or insufficient behavioral data in all condi-
tions for reliable analysis (N = 2). The remaining 19 subjects (9 female) ranged in age from 21 to 29 years (mean 
24.7). All methods and procedures were approved by the Institutional Review Board (IRB) at the University of 
Pittsburgh and were carried out in accordance with the approved protocol. Informed consent was obtained from 
all subjects following the guidelines of the IRB. Subjects were compensated at a rate of $10 per hour for their 
participation. All behavioral and imaging data will be made available upon request (see contact information for 
the corresponding author).

Stimuli.  The stimulus set consisted of 42 neutral-expression face images (MacBrain Face Stimulus Set, pro-
vided MacArthur Foundation Research Network on Early Experience and Brain Development, Boston, MA) 
and 43 house images (photographs of houses taken in the local Pittsburgh area). Face and House images were 
cropped to remove non-relevant features, all with the same dimensions (512 × 512 pixels). Face and house stimuli 
were then normalized, noise-degraded, and converted into movies 1,14. Each original image was degraded by 
filtering the signal in the original stimulus (normalized brightness, luminance, and contrast) with a Gaussian 
white noise kernel using parameters that yielded a new version of the original image with a desired signal to noise 
ratio (SNR). This procedure produced a single still frame of the original image that was embedded in randomly 
distributed noise. Repeating this procedure 90 times for image X, at a given noise level, and concatenating the 
set of images X1–X90, produced a dynamic display of noise over the face or house stimulus. All 90 still frames, 
each containing a random spatial distribution of noise of the same SNR, were presented at 15 frames per second 
to produce a movie running 6 seconds in length. The image processing procedure was repeated for all individual 
face and house stimuli.

It is important to note that, while the spatial pattern of noise over the image changes from frame to frame, 
the SNR of the image is kept constant for the full duration of the trial (6 s). In contrast with similar paradigms in 
which the stimulus is gradually revealed over the course of each trial, the current approach of holding the SNR 
constant allows neural signatures of evidence accumulation to be investigated independently from basic sensory 
processing. Based on previous work1,14 we fixed the noise-level of face and house images at 67%. One approach is 
to psychophysically matched noise levels across the two types of stimuli in order to control for category-specific 
effects. However, one original aim of the current study was to examine differences in the effects of expectation 
for categories with more (i.e. face) and less (i.e. house) predictable features14. Thus, face and house stimuli were 
degraded to include the same level of noise in order to preserve category specific effects.

Task.  In the task, subjects were presented with noise-degraded movie stimuli for 6 sec and made a face versus 
house discrimination decision at any time during trial. Each test trial, which we will refer to as the “task phase”, 
was preceded by a cue (in the “cue phase”) informing the participant of the probability (i.e., the prior) that the 
upcoming stimulus would be a face or a house (Fig. 1). The cue phase consisted of a screen-centered movie of 
99% noise surrounded by a red border. Cues appeared as a number-letter combination in the center of the movie 
frame. Before scanning, subjects were trained on how to interpret the cues. The complete list of cues included an 
80% prior for face (80F) and house (80H) and a 50% neutral cue (50N) indicating an equal probability for each 
category. After the three second cue phase, the border turned green to indicate trial onset and an image was pres-
ent within the dynamic field of noise. Subjects were given six seconds to make a response indicating their choice 
with a button press using the left or right index fingers. Jittered periods between trials (see Design and Timing) 
consisted of a 99% noise degraded movie surrounded by a grey border, during which the subject was instructed 
to rest until presentation of the subsequent cue. The laterality of stimulus-response mapping was counterbal-
anced across subjects. Cues were valid predictors of the probability of seeing each category on the upcoming task 
phase (see Design and Timing). Stimulus presentation and behavioral data collection were programmed using the 
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PsychoPy software package35. Prior to beginning the main experiment, subjects were given a chance to practice 
the task for a maximum of 15 minutes, less if they were comfortable with the instructions.

Design and Timing.  In the experiment, subjects completed a total of 600 trials split across five runs of 120 
trials per run in a rapid event-related design. In order to reliably separate activation related to cue and task events, 
a catch-trial design15,36–38 was used in which 20% of trials were cue-only (i.e. catch-trials). Thus, of the 200 trials 
for each cue type (80F, 50N, 80H), 40 were catch-trials (Fig. 1, bottom; three seconds total duration), in which the 
cue phase was immediately followed by a brief inter-trial interval, indicated by a gray border and 99% noise stim-
ulus. Subjects were informed of this condition prior to the experiment and told that this additional contingency 
did not impact the reliability at which the cues predicted each stimulus. The remaining trials were full trials, con-
sisting of both the cue and task phases (Fig. 1, top; nine seconds total duration). On full trials, the cue veridically 
indicated the probability of seeing a face or house stimulus. For example, on full trials in the 80F condition, the 
cue was followed by a face stimulus on 128 trials (i.e., valid trials) and by a house stimulus on 32 trials (e.g., invalid 
trials). Full trials in the 50N condition included 80 face and 80 house stimuli.

Using a standard rapid event-related design39, trial onset times were jittered such that duration of the rest 
periods were distributed exponentially, ranging between 0 and 15 second durations (mean = 1.92 seconds) at 
multiples of the repetition time (TR; see Image Acquisition). The specific order and temporal distribution of rest 
periods was generated using optseq2, a tool that optimizes the ordered sequence of conditions for minimal covar-
iance between regressors39. The catch trial approach eliminates the need to jitter the cue and stimulus phase onsets 
on full trials, thus stimulus onset time in the task phase was fixed at the end of the cue phase.

Image Acquisition.  Functional and anatomical images were acquired on a Siemens Allegra 3-Tesla scanner. 
High-resolution anatomical images were acquired using a T1-weighted MP-RAGE sequence (repetition time 
[TR] = 1.54 s, echo time [TE] = 3.04 ms, flip angle [FA] = 8 degrees, inversion time [TI] = 800 ms). T2-weighted 
anatomy images were obtained with a spin-echo sequence (TR = 6.0 s, TE = 73 ms, FA = 150 degrees, 38 slices). 
Functional images sensitive to the BOLD contrast were acquired with a whole-brain echo-planar T2*-weighted 
series (TR = 1.5 s, TE = 25 ms, FA = 60 degrees, 3.125 × 3.125 mm in-plane resolution, 3.5 mm slice thickness, 29 
slices). The first four images of a run were discarded to allow net magnetization state and RF signal to approach 
steady state. Subjects were provided with earplugs to minimize scanner noise. T1- and T2-weighted images were 
used primarily to convert functional data to atlas space.

Behavioral Data Analysis.  Fast RT outliers were removed from data for each subject using the exponen-
tially weighted moving average (EWMA) analysis packaged in D-MAT, an open source MATLAB toolbox for 
fitting diffusion models40. In total, 1.94% of trials were eliminated based on subject-specific EWMA estimates. 
Mean RT (correct trials only) and accuracy measures were analyzed separately using a 2 (stimulus: face, house) 
× 3 (cue: 80H, 50N, 80F) repeated-measures ANOVA model. Finally, a one-way repeated measures ANOVA was 
run within face and house categories separately to test the simple effect of probabilistic cues on RT. All analy-
ses revealed that the data significantly violated the sphericity assumption. Thus, Greenhouse-Geisser corrected 
results are reported for both measures. All pairwise comparisons reported are corrected for multiple comparisons 
using a Sidak HDR correction.

Drift-Diffusion Model (DDM).  The Drift Diffusion Model (DDM) assumes that binary decisions are made 
by accumulating stochastic evidence in a decision variable (DV) between two decision boundaries, each repre-
senting the evidence criterion for choosing one of two categorical outcomes. As evidence builds for one category 
over the other, the DV drifts towards favored boundary until reaching criterion, executing the corresponding 
choice (e.g., accuracy) and marking the time of decision (e.g., RT) of a given trial. Repeating this process many 
times yields a response time distribution for each category as well as the proportion of correct and incorrect 
decisions, accounting for commonly observed speed-accuracy tradeoffs that are unaccounted for by standard 
behavioral analyses.

Models were fit to the data using HDDM41, a python package for hierarchical Bayesian optimization of DDM 
parameters. Hierarchical Bayesian parameter estimation enables simultaneous, nested estimation of group- and 
individual subject-level parameters where each parameter is represented as a distribution reflecting the uncer-
tainty over a range of possible values. In this form of hierarchical model, group-level uncertainty associated with 
each parameter is derived from variability between subject-level estimates, and in turn, forms the prior distribu-
tion from subject-level posterior distributions are sampled. Given the likelihood function L(parameters|data), 
Bayes rule is applied to update the prior distribution of each parameter to reflect the new estimate of uncertainty 
given the observed trial-wise RT and accuracy data. Thus, for each parameter, model fits return a posterior dis-
tribution which can be directly used to evaluate the statistical reliability of condition effects on a given parameter. 
For instance, to test the hypothesis that face cues significantly biased the starting-point relative to the neutral 
condition, assuming a criterion of 5% probability that the observed effect is due to chance, a significant difference 
would be reported if the overlap of the posteriors was equal to or less than 5%.

All models were constructed such that a face (house) response resulted when a positive (negative) drift-rate 
caused the DV to terminate at the top (bottom) decision boundary. Defining decision boundaries with respect 
to category rather than accuracy, which is typically done for binary decision tasks, is important for meaningful 
interpretation of an upwards (i.e., face) or downwards (i.e., house) expectation bias in the starting-point param-
eter. All models included group- and subject-level estimates for boundary height (a), face drift-rate (vF), house 
drift-rate (vH), starting-point (z), and non-decision time (tr). Parameter estimates of inter-trial variability in the 
drift-rate (sv), starting-point (sz), and non-decision time (st) were included at the group-level only, as reliable esti-
mation of these parameters requires more observed trials than available in individual subject datasets. We fit three 
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versions of the drift-diffusion model to choice and RT data in which probabilistic cues were assumed to bias the 
face/house discrimination by modulating either the starting-point, the drift-rate, or both. We refer to the model 
allowing only the starting-point to vary across conditions as the prior bias model (PBM) and the model allowing 
only the drift-rate to vary across cues as the dynamic bias model (DPM), as a change in the starting-point implies 
a pre-sensory source of bias whereas a change in the drift-rate biases the accumulation of sensory input dynami-
cally. Finally, we refer to the model in which both parameters are free to vary across conditions as the multi-stage 
bias model (MSM).

To identify parameters dependencies on cue and stimulus conditions, 80F, 50N, and 80H cues are denoted by 
lower case ‘f ’, ‘n’, and ‘h’ subscripts and Face and House stimuli are denoted by uppercase ‘F’ and ‘H’ subscripts. 
Thus, in the PBM starting-point estimates for each cue are shown as zf, zn, and zh, and drift-rates for Face and 
House stimuli as vF and vH. In the DBM, Face drift-rates in each cue condition are shown as vfF, vnF, and vhF, and 
House drift-rates as vfH, vnH, and vhH. In the MSM, starting-point (zf, zn, and zh), face drift-rate (vfF, vnF, and vhF), 
and house drift-rate (vfH, vnH, and vhH) parameters were free to vary across cue type. To account for differences in 
model complexity (proportional to the number of free parameters included compared to the others), model fits 
were compared using the Deviance Information Criterion (DIC), which reflects the sum of the Deviance (meas-
ure of discrepancy between data and model predictions) and a complexity penalty, pD (the effective number of 
parameters included in the model). Thus, models with a lower DIC are considered to provide a better fit to the 
data. Compared to more traditional measures of model fit (i.e. BIC, AIC) the DIC is better suited for assess-
ing performance and complexity of hierarchical models, where both measures are nested at multiple levels. The 
accepted threshold for determining a significant difference between two models fit to the same data is a DIC of 
10 or more42.

Functional Imaging Preprocessing.  Imaging data were preprocessed to address noise and image arti-
fact. Preprocessing included within-TR slice timing correction using sinc interpolation, motion correction using 
rigid-body rotations and translations, within-run voxel intensity normalization to a mode of 1000 to facilitate 
inter-subject comparisons43, and computation of atlas space transformation matrices. Data were resampled to 
2 mm isotropic voxels and transformed into stereotaxic atlas space during group analyses. All preprocessing and 
imaging analysis was carried out using proprietary software37,38 developed at Washington University in St. Louis.

General Linear Models (GLMs).  Subject-level data were analyzed with voxelwise general linear mode-
ling44 (GLM). Three GLMs were constructed in total. In the first GLM (the combined events GLM), full trials 
were coded by the combination of cue type and stimulus category and catch trials were coded by cue type only. 
This model isolated cue-evoked activity on the cue-only catch trials, thus eliminating possible stimulus-related 
contributions to the observed signal change during the expectation period, and estimated full trials as the com-
bined effect of the cue and stimulus over the entire trial duration. The primary purpose of this model was to help 
validate data estimated using the separate events GLM. In the separate events GLM, the cue and stimulus phases 
of each full trial were treated as separate regressors. All occurrences of each cue type (e.g., 80F cues from catch 
and full trials) were aggregated into a single cue event type. Stimulus phase events were coded by a combination 
of stimulus category (face, house) and the preceding cue type (80H, 50N, 80F). This model takes full advantage of 
the catch trial design by isolating cue- and stimulus-evoked timecourses into separate response functions.

Models were fit to the data using a finite impulse response (FIR) method, which makes no assumption 
about the shape of the BOLD response. In the combined-events GLM, a series of 14 delta functions described 
event-related effects as a time series of the percent of BOLD signal change from baseline, time-locked to 1TR 
before cue onset for both catch and full trial types. In the separate events GLM, a series of 12 delta functions 
described event-related effects as a time series of the percent of BOLD signal change from baseline, time-locked 
to 1TR before cue onset for cue events and and 1TR before task onset for task events. We used software developed 
at Washington University in St. Louis for image processing and analysis37,38.

Localization of face- and house-selective regions of ITC.  Analyses pertaining to the main hypotheses 
focused on face- and house-selective regions of interest, satisfying the same criteria for object selectivity as in 
Tremel and Wheeler1. From the separated-events model, face- and house-preferential ROIs within the fusiform 
and parahippocampal gyri were defined for each subject by generating a voxelwise face-minus-house contrast 
map using two-tailed t-tests. This analysis generated subject-specific statistical maps showing all voxels with face- 
and house-preferential activations, collapsing across cue type and including only activation from the stimulus 
phase. These initial t-statistical maps were smoothed with a 4 mm full width at half maximum (FWHM) using a 
Gaussian kernel. Peak voxels of activity exceeding 95% confidence level (−1.96 > Z > 1.96) were identified, and 
an 8 mm spherical region of interest (ROI) was grown around each peak. Voxels that were absent from the initial 
statistical map (i.e., below the Z-statistic threshold) were dropped from the ROIs. Each subject contributed at 
least one face-preferential and one house-preferential region to subsequent group-level random-effects analyses 
examining cue and stimulus effects on the magnitude of regional activation.

Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author upon request.
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