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Goal-directed perceptual decisions involve the analysis of sensory
inputs, the extraction and accumulation of evidence, and the
commitment to a choice. Previous neuroimaging studies of perceptual
decision making have identified activity related to accumulation in
parietal, inferior temporal, and frontal regions. However, such effects
may be related to factors other than the integration of evidence over
time, such as changes in the quantity of stimulus input and in
attentional demands leading up to a decision. The current study tested
an accumulation account using 2 manipulations. First, to test whether
patterns of accumulation can be explained by changes in the quantity
of sensory information, objects were revealed with a high quality but
consistent quantity of evidence throughout the trial. Imaging analysis
revealed patterns of accumulation in frontal and parietal regions but
not in inferior temporal regions. This result supports a framework in
which evidence is processed in sensory cortex and integrated over
time in higher order cortical areas. Second, to test whether
accumulation signals are driven by attentional demands, task
difficulty was increased on some trials. This manipulation did not
affect the nature of accumulating functional magnetic resonance
imaging signals, indicating that accumulating signals are not
necessarily driven by changes in attentional demand.
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Introduction

Understanding how sensory information is transformed into

choice by a biological system is a fundamental challenge in

science. Goal-directed perceptual decisions require the pro-

cessing of sensory input, the evaluation of alternative solutions,

and the commitment to a choice (Gold and Shadlen 2007)

(Fig. 1). Research at neuronal (Shadlen and Newsome 2001;

Romo and Salinas 2003; Wang 2008) and system (Heekeren

et al. 2006; James and Gauthier 2006; Philiastides and Sajda

2007; Ploran et al. 2007; Heekeren et al. 2008; Wheeler et al.

2008; Ho et al. 2009; Kayser et al. 2010; Noppeney et al. 2010)

levels indicates that perceptual choices are derived from

information processing in brain areas that integrate sensory

evidence over time. Activity in these neural ‘‘accumulators’’ has

been found to increase at a rate that is predictive of response

timing and, in neurophysiological data, response choice (Gold

and Shadlen 2007).

Recent functional magnetic resonance imaging (fMRI)

studies of object recognition using a gradual unmasking

approach have found patterns of accumulating signals in

regions located in frontal, parietal, and temporal cortex

(Carlson et al. 2006; James and Gauthier 2006; Ploran et al.

2007). In a study by Ploran et al. (2007), a pattern of

accumulation in temporal, parietal, and frontal regions was

signified by increased fMRI activity when the stimulus

appeared, followed by a rising edge of activity that decreased

in slope as decision time increased (Fig. 1). This pattern

differed from a more transient pattern found in medial frontal

and frontal opercular regions, in which activity did not change

from baseline until the time of decision. Given that activity

onset began at the time of decision, this pattern may reflect

neural processing related to the commitment to a choice.

Given the conformity with random-walk and diffusion

models (Link and Heath 1975; Ratcliff and Rouder 1998; Usher

and McClelland 2001; Ratcliff et al. 2007) and consistency with

fMRI studies using standard paradigms (Pleger et al. 2006;

Tosoni et al. 2008; Ho et al. 2009; Kayser et al. 2010), the

‘‘accumulation’’ pattern of activity may reflect a neural in-

tegration-to-bound mechanism (e.g., Hanes and Schall 1996) in

which the flow of information is gated at certain stages of

processing. Decisions about object identity may be derived

from signals accruing in those areas. However, it is necessary to

consider factors other than evidence accumulation. For

example, the gradual unmasking paradigm used in some studies

(Carlson et al. 2006; James and Gauthier 2006; Ploran et al.

2007; Wheeler et al. 2008) increased the quantity of available

perceptual information over time, possibly causing an accumu-

lation of fMRI activity that reflects a gradual increase in the

quantity of stimulus information rather than accumulated

evidence. Another factor is the role of attention. Across par-

adigms, increases in fMRI activity as a decision becomes

imminent may reflect other cognitive functions such as increased

demands on attentional control.

To test the extent to which sensory processing contributes

to accumulation effects in an extended object recognition

paradigm, objects were masked with semirandomly spaced

openings. By changing the location (but not amount) of the

openings over time, subjects saw more of the object as the trial

progressed. Critically, this technique maintained a consistent

quantity of stimulus information throughout the trial, while it

increased the overall perceptual evidence. If the observations

of accumulation were a result of the gradual revelation

procedure, and accompanying increase in available perceptual

information over time, this new mask technique should

eliminate accumulating fMRI signals. Alternatively, a pattern

of accumulation should occur if it is a representation of

increasing evidence supporting the impending decision. As

a further test of an accumulation account, we also examined

the pattern of activity on trials in which the item was not

identified during the masking procedure. An accumulation, or

integration-to-bound, account would predict a slower rate of
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accumulation on these trials than on trials in which an item is

correctly identified during the masking procedure.

To investigate the extent to which attention or cognitive

effort modulated the pattern of accumulating blood oxygen

level--dependent (BOLD) signal, 2 objects were shuffled

beneath the mask on some trials. On these ‘‘shuffle’’ trials,

object information was inconsistent; each step alternated

between revealing information for the same object or in-

formation for a similarly shaped object of a different identity.

The consequence of this manipulation is that identifying the

object is intended to be more difficult on shuffle than static

presentation. If accumulation is a reflection of effort, shuffle

trials should require greater effort and result in greater activity

than trials in which the object remains the same throughout

(static trials).

Materials and Methods

Subjects
Subjects were 18 healthy right-handed native English speakers with

normal or corrected-to-normal vision. Two subjects were excluded

from analyses due to excessive movement. The remaining 16 subjects

(8 females) ranged in age from 19 to 31 years (mean, 23). Informed

consent was obtained from all subjects according to procedures

approved by the Institutional Review Board of the University of

Pittsburgh. Subjects received $50 for participation.

Stimuli
Stimuli consisted of 102 grayscale images of common objects that were

reformatted into a standard 284 3 284-pixel image with a white

background (Rossion and Pourtois 2004). On most trials (‘‘static’’ trials),

one object was shown beneath a series of masks that revealed different

parts of the object over time. Ninety objects were randomly selected

for use on these trials. Twenty-four other objects were reserved for

practice. For additional practice with 3 subjects, 20 new stimuli were

added to better familiarize the task and ensure satisfactory behavioral

performance. Two initial subjects viewed 102 stimuli, but the number

of trials was reduced thereafter due to time constraints. Each subject

received a randomly selected list of stimuli, ensuring that each viewed

a unique set and order of objects.

On some trials (shuffle trials), the stimulus beneath the masks

alternated between 2 similar objects. For these trials, there were 34 sets

of objects, each composed of 2 grayscale object images (68 objects

total) measuring 284 3 284 pixels. The 2 objects in a set were matched

and edited to be of similar appearance by visual inspection

(i.e., brightness, contrast, position, shape, size), despite clear member-

ship in different object categories (e.g., whale and cucumber).

A set of masks was used to hide parts of the objects. Objects were

presented within a 10.0 3 10.0 cm grid at the center of the screen with

a white background. The remaining screen had a black background.

Ten sets of 7 masks were created. Each mask was a 21 3 21 grid

measuring 10.0 3 10.0 cm, the perimeter of which was black, leaving

a grid of 19 3 19 squares. In each mask, 45 squares in the 19 3 19 grid

were removed (~12.5% of the total area), while the remaining squares

were opaque (Fig. 2a). To prevent redundancy in stimulus pre-

sentation, square removal within a set was random without re-

placement. Over the course of a trial, a total of 315 squares in a mask

were at some point transparent, while the remaining 46 were always

opaque, allowing a total of 87.25% of the image to be seen. This

arrangement was determined in a sequence of behavioral pilot

experiments to produce a broad distribution of recognition times.

Object--mask pairings and the order of masks within a set were

randomized so that each object--mask combination was unique for each

subject. The masks were placed in the foreground, the objects in the

background.

Behavioral Paradigm
Testing consisted of 4 runs of 31 trials (124 total trials per subject).

Two initial subjects had 4 runs of 34 trials (136 total trials). On each

trial, an object, or set of objects, was displayed for 16 s in 8 discrete 2-s

steps. At trial onset, the object appeared under one of the 7 masks from

a set. On static trials, the object remained the same while the mask

changed at 2-s intervals until all 7 masks in a set were exhausted

(Fig. 2a). On the eighth and final step, the mask was removed and the

object was revealed. On shuffle trials, 2 objects alternated pseudor-

andomly behind the mask, with a maximum of 2 appearances in

succession. On each shuffle trial, each object was viewed a total of 4

times. The order of presentation was randomized, ensuring each

subject had a unique random order of shuffling for each set. On the

eighth and final step of shuffle trials, the mask was removed and one of

the 2 objects was revealed. For both trials types, each of the 8 steps

corresponded with a whole-brain acquisition. Between each step,

a 100-ms black screen was inserted to help disguise the object switch

on shuffle trials. Thus, each mask was on the screen for 1900 ms. An

exponential distribution of between-trial jitter of 2, 4, or 6 s (mean

interstimulus interval = 3.16 s) was included to allow event-related

analysis (Dale 1999). To obtain a consistent measure of the evolving

task-related BOLD response, there was no within-trial jittering of step

onsets.

Subjects were instructed to press a button when they could identify

the object with a reasonable degree of confidence. Neither speed nor

accuracy was emphasized in the instructions, and subjects were not

specifically instructed to respond before the final step. When an object

was fully revealed on the final (eighth) step, subjects pressed the same

button again only if their earlier recognition had been correct. This

response served as the verification of accuracy (VoA) of earlier

recognition. If subjects were unable to identify an object during the

masked portion of a trial, they were instructed to make a button press

on the eighth step (hereafter referred to as ‘‘TR8’’ trials). Thus, subjects

generated 2 motor responses on correct trials, one at TR and one at

VoA. Subjects generated one response during incorrect trials (at TR)

and during trials in which recognition did not occur before VoA (TR8).

Assessing accuracy on shuffle trials was not straightforward because

only one of the 2 shuffled objects was revealed at VoA. Correct shuffle

trials were defined as those in which a recognition response was

followed by a VoA response. Shuffle trials with a recognition response

but no VoA response may have been correct, but because it was not

Figure 1. The outline depicts feed-forward flow of information in the decision-
making process. Time courses on the right illustrate BOLD responses from prior work
(Ploran et al. 2007) that may correspond to the theoretical decision processes on the
left (e.g., Ratcliff 2002).
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possible to determine their accuracy, these trials were discarded from

the main analyses.

Response hand was counterbalanced across subjects to help factor

out lateralized motor signals in group analyses. E-Prime software was

used for stimulus presentation and data collection (Psychology

Software Tools). The cumulative distributions of behavioral responses

were fit with a sigmoid function f

�
x

�
= a
ðb+e–cx Þ+d (Fig. 2c).

Image Acquisition
Images were obtained using a Siemens Trio 3-T scanner at the

University of Pittsburgh Medical Center’s Magnetic Resonance Re-

search Center. The paradigm, presented by a PC running E-Prime, was

projected onto a screen at the head of the magnet bore using

a BrainLogics MRI Digital Projection System. The subject viewed the

stimuli via a mirror attached to the RF coil. Earplugs were provided to

minimize scanner noise. A fiber optic glove response pad connected to

the PC via an interface box recorded responses (BrainLogics,

Psychology Software Tools).

Anatomic images were obtained using a high signal-to-noise

magnetization-prepared rapid-acquisition gradient echo sequence

(repetition time [TR] = 2200 ms, echo time [TE] = 3.29 ms, flip angle

[FA] = 9�, inversion time [TI] = 1000 ms). BOLD-sensitive functional

images were acquired during performance of the task using a whole-

brain spin-echo echo-planar T2
*-weighted series (TR = 2000 ms, TE =

30 ms, FA = 79�, 3.2 3 3.2-mm in-plane resolution with 3.2-mm slice

thickness). The first 3 image acquisitions of each run were discarded to

allow net magnetization to reach steady state.

Data Analysis
Imaging data from each subject were preprocessed to remove noise

and artifacts. Motion was corrected across and within runs using a rigid-

body rotation and translational algorithm (Snyder 1996). Whole-brain

functional data were then normalized to a mode of 1000 to facilitate

intersubject comparisons (Ojemann et al. 1997). To account for

differences in single slice acquisition times, slices were temporally

realigned to the temporal midpoint of the first slice using sinc

interpolation. BOLD data were then resampled into 2-mm isotropic

voxels and transformed into stereotaxic atlas space by aligning an

individual subject’s T1-weighted image to an atlas-transformed target

T1-weighted template using a series of affine transformations (Talairach

and Tournoux 1988; Lancaster et al. 1995; Michelon et al. 2003; Fox

et al. 2005).

After preprocessing, data were analyzed voxel-by-voxel using the

general linear model approach for each subject (Friston et al. 1994;

Miezin et al. 2000; Ollinger et al. 2001). BOLD data in each voxel at each

time point were modeled as the sum of coded effects, produced by

modeled events and by error. Event regressors were coded into each

model at trial onset according to time of recognition (TR1--8), accuracy

(correct, incorrect), and trial type (static, shuffle), for a total of 32

possible events. Though trials were 16 s in duration, events were

modeled over 32 s (16 time points) from trial onset to account for the

slow hemodynamic response. Within each run, signal drift was modeled

by a linear trend parameter, while baseline signal was modeled by a

constant term. A series of delta functions described event-related

effects as estimates of the percent of BOLD signal change from the

baseline term. It is important to note that this approach makes no

assumptions about the shape of the BOLD response. Software

developed at Washington University (FIDL) was used for image

processing and analyses (Ollinger et al. 2001).

To identify task-related activity during accurate performance on

correct masked trials, a voxelwise repeated-measures mixed-effects

analysis of variance (ANOVA) was computed on the correct static trial

data, with subject treated as a random effect. In this analysis,

recognition time across steps 3--7 (TR3--7) was treated as a within-

subject factor with 5 levels, and time was treated as a repeated factor

with 16 levels of time point (beginning at trial onset). TR1--2 trials

were not included in the analysis due to insufficient numbers. TR8 trials

were also not included because, while subjects recognized the object

on the last step, they made only one button press during the trial and it

was not possible to score recognition accuracy on these trials. This

Figure 2. Behavioral task and results. (a) This diagram illustrates the task design. Every 2 s, the mask covering the object changed (TR1--7), revealing different parts of the object
underneath but without changing the quantity of visual information. (b) Percentages of trials with a response before VoA are plotted as a function TR step, separately by trial
type (static, shuffle). (c) The proportions of trials with a response before VoA for static and shuffle trials are plotted as a function of TR and fit with logistic functions. Note that
TR8 trials were not included due to a scaling disparity (see text for results).
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analysis produced a separate image for each main effect and interaction

term. To minimize bias effects in ROI selection, the main effect of time

image was used to define regions of interest (ROIs). This image reflects

the degree to which the temporal profile over the 16 time points differs

from the baseline term (i.e., there is a change in signal magnitude over

time), independently of TR. The uncorrected z-transformed F-statistical

image for the main effect of time was smoothed with a 4-mm full-width

at half-maximum Gaussian filter and a threshold of z = 5.0 was applied.

This map was then corrected for sphericity and multiple comparisons

using a Monte Carlo method with a threshold of P < 0.05 at a 100-voxel

extent (Wheeler et al. 2006).

To define ROIs, the uncorrected main effect of time image was

further smoothed by convolving with a 4-mm hard sphere kernel, and

an automated algorithm searched for the location of peaks exceeding

P < 0.001 significance. Peaks separated by <10 mm were consolidated

by averaging their coordinates. ROI volumes were grown up to a

maximum 10-mm radius of contiguous voxels around the peak

coordinates. Voxels failing sphericity and multiple comparisons

corrections were then excluded from the ROIs. For practical purposes,

ROIs comprising fewer than 100 voxels were excluded from analysis.

This procedure defined 53 ROIs that were significantly active during

correct trials. Time courses for correct TR3--7 and TR8 trials in the static

condition, and TR8 trials in the shuffle condition, were extracted from

each ROI and used in second order analyses.

Hierarchical Clustering
To objectively separate and group ROIs according to the shape of their

TR-dependent responses, a hierarchical cluster analysis (Salvador et al.

2005) was used to classify region time courses. Five time courses of 16

time points each, corresponding to correct static trials at TR3--7, were

concatenated for each region and then entered into a single matrix for

all 53 ROIs, resulting in a 53 3 80 matrix of time points. The Euclidean

distances were computed between pairs of the objects in the matrix,

and a hierarchical cluster tree was then generated from these distance

vectors using Ward’s linkage algorithm (Ward 1963) in the Matlab

software package (Mathworks). This linkage method uses the inner

squared distance of each pair in a minimum variance algorithm. The

algorithm computes the increase in the within-cluster error sum of

squares due to joining a pair of clusters. When this increase is

minimized, those 2 clusters are joined. Because Ward’s linkage uses an

ANOVA approach, this method tends to yield a more reliable cluster

tree than other methods (Dimitriadou et al. 2004). The distance vectors

were then used to construct a dendrogram, a chart illustrating the

correlation between regions and clusters of regions by length of the

connecting line. Regions connected with shorter lines have greater

similarity in their time course patterns and are thus more highly

correlated than regions connected with longer lines.

After the initial dendrogram was generated, it was clear that the

signal magnitude in some regions influenced how they were clustered.

Because we wanted to cluster regions according to the timing and

shape of their time courses rather than activity level (i.e., magnitude of

signal change), the magnitudes were scaled across regions so that they

would cluster according to their relative shapes. Signal change

estimates at each time point were scaled to a minimum value of

0 and a maximum of 1. A scaling procedure was chosen in favor of

a standardizing technique (e.g., z-scores) because standard scores

would still exhibit region-specific differences in magnitude and

therefore fail to address the issue. It is important to note that scaling

was applied across regions and did not affect within-region time course

differences. This preserved the relative shape and magnitude of each

time course within a region, thereby still allowing within-region

comparisons across conditions. The magnitude-scaled data were only

used for the cluster analysis and not for analyses discussed in later

sections.

Characterization of Waveform Patterns
In order to quantify specific properties of time courses pertaining to

our hypotheses about accumulation rate, the time of activity onset and

the slope of the leading edge of each time course were computed. Note

that the cluster analysis does not provide a parametric test of the

reliability of differences in these properties, so we also performed

a series of analyses to test their reliablity. TR8 trials were excluded from

this analysis because, unlike TR3--7 trials, they included only a single

decision point.

Time of signal onset was computed in 2 stages. In the first, time

courses were interpolated linearly. This procedure simply connected

the 16 time points of a time course with a straight line of interpolated

values. Along each line, 1000 points were generated, extending each

initial 16-point time course to 15 000 points. By interpolating the data,

the effective temporal resolution can be increased under the assumption

that the values between any 2 time points can be estimated along

a straight line. In the second stage, the goal was to determine the time at

which activity increased reliably. Pairwise statistical comparisons

between the interpolated time point value and a time course-specific

estimate of baseline activity were computed. An estimate of baseline

activitywas computed for each TR conditionwithin eachROI as themean

of the first and last time points of its time course (i.e., not necessarily

zero). A t-test was then performed at each interpolated time point along

the time course, comparing the baseline estimate for that time course

with the signal change at that time point, starting at time 0.0 s and

advancing at steps of 0.001 s until the values differed at the P < 0.05 level.
This point provided an estimate of the onset time of activity.

The slope of the leading edge of each time course was calculated

within specific time windows for each cluster. Except for the fusiform/

IT ROIs, the time windows were informed by observations from a prior

study (Ploran et al. 2007). Slope was calculated as the rise (signal

change) divided by the run (change in time across the window) in each

ROI, for each TR, and for each subject. Because the pattern of time

courses differed markedly across clusters, it was necessary to establish

cluster-specific time windows. When the pattern of time course

changed as a function of TR (e.g., commitment and accumulator ROIs),

it was also necessary to use a shifting time window within a cluster to

capture the leading edge of the BOLD response. The time window

parameters are listed in Table 1. For sensory and fusiform/IT ROIs,

slope was calculated between 2 and 6 s for each TR. In accumulator

ROIs, windows started at the 2-s mark and shifted endpoints according

to TR, with endpoints of 8, 10, 12, 14, and 16 s for TR3--7, respectively.

Constant window widths of 4 s were applied to commitment ROIs,

with start points of 4, 6, 8, 10, and 12 s for TR3--7, respectively.

To test the reliability of these observations within and between the 4

clusters, each region’s onset and slope estimates were entered into

a repeated-measures ANOVA using 5 levels of the repeated-measure TR
(3--7). First, for onset times, a repeated-measures ANOVA tested for

differences across the between factor of cluster (sensory, fusiform/IT,

accumulator, commitment regions). Similarly, differences in slope

measurements were tested across clusters using a repeated-measures

ANOVA, with 4 levels of the cluster factor and 5 levels of the TR factor.

Separate 1 3 5 repeated-measures ANOVAs with polynomial trend

analyses tested for reliable trends within the onset and slope values

within each cluster. A main effect of recognition time would verify the

reliability of mean differences across the 5 TR levels (3--7), and the trend

analysis determines whether the change in values across TR is linear.

Slope Estimation Procedures
To test whether accumulation was faster on TR3--7 than on TR8 trials in

the static condition, initial slope (in units of percent signal change

divided by time) for each condition and region was estimated in each

subject. Slope estimates were then averaged across all ROIs in each of

the 4 positive clusters for each subject. A single factor ANOVA, with 6

levels of TR was used to test differences between TR3--8 trials within

Table 1
Time windows (in seconds) used to calculate the slope of the leading edge of each time course,

broken down by TR and by cluster

Cluster TR3 TR4 TR5 TR6 TR7

Sensory 2--6 2--6 2--6 2--6 2--6
Fusiform/IT 2--6 2--6 2--6 2--6 2--6
Accumulator 2--8 2--10 2--12 2--14 2--16
Commitment 4--8 6--10 8--12 10--14 12--16
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each cluster. Significant main effects of TR were further investigated in

pairwise analyses using the Tukey Honestly Significant Difference

method.

To test whether the shuffle manipulation affected the rate of

accumulation, slope estimates for correct static and shuffle TR3--7 trials

were compared for each cluster. Due to the low number of trials in the

shuffle condition when data were divided into 2-s bins, data were

averaged over all time bins prior to TR8. Slope estimates were then

calculated for each condition from the cluster averages within a 2--12 s

window of activity. The slope estimates were entered into paired t-tests

for each cluster to compare the initial slope depending on static or

shuffle trial status.

Results

Behavioral Data

On static trials (n = 1474), subjects made recognition

responses to 56.3% (standard deviation [SD] 13.4%) of the

objects, only verification responses to 42.5% (13.4%) of objects

(indicating no recognition until the object was fully revealed

on these static Tr8 trials), and no response to 1.2% (3.0%) of

objects. Given an initial recognition response, 73.5% (21.4%)

received a verification response (VoA) to indicate accurate

object identification. Correct responses were distributed

widely throughout the trial period, with a relatively even

spread over TR2--7 (2--16 s) and a peak at TR4 (Fig. 2b).

On shuffle trials (n = 534), subjects made fewer recognition

responses overall, 44.4% (SD 18.3%). Given an initial recogni-

tion response, 52.7% (20.3%) received a verification response.

Of the remaining total shuffle trials, 52.1% (16.2%) received only

a verification response (shuffle TR8 trials) and 3.5% (4.4%)

received no response at all. Most correct responses were made at

TR4--7 (Fig. 2b). Compared with static trials, the shuffle trial

response time distribution was shifted toward the end of the trial

(Fig. 2c), reflecting an overall increase in response times on

shuffle trials.

Subjects were not informed of the shuffling prior to the

experiment. Postexperiment debriefing confirmed that 10 of

the 16 subjects did not notice the shuffling. Six subjects

reported noticing the shuffling, but none changed their

approach to the task.

Task-Related ROIs

The ROI analysis described in the Materials and Methods

identified 53 regions with significant changes in signal magni-

tude over time. Activations from the main effect of time map are

shown in Figure 3, middle panels. ROIs defined from this map

were distributed throughout the brain, with both positive and

negative waveforms and a variety of temporal profiles. Regions

with positive waveforms (Table 2) included lingual gyrus,

precuneus, middle occipital gyrus (mOG), anterior insula/

frontal operculum (aI/fO), intraparietal sulcus (IPS), and the

medial portion of the superior frontal gyrus (mFG). Figure 3a--

d shows static trial time courses on TR3--7 trials from single ROIs,

including right cuneus, fusiform gyrus, superior occipital gyrus,

and aI/fO, respectively. The static TR8 condition is plotted for

comparison. Regions with negative waveforms were found in or

near cuneus, precuneus, lingual gyrus, superior temporal gyrus,

and posterior and anterior cingulate cortex (Supplementary

Table 1). Both positive and negative regions showed a high

degree of overlap with those found in our study using a similar

perceptual decision paradigm (Ploran et al. 2007). Table 2 lists

the region coordinates from both studies for comparison, along

with a label denoting the cluster assignment (described in the

following sections) in the 2 studies.

Hierarchical Cluster Analysis of Temporal Profiles

A hierarchical cluster analysis was used to objectively sort the

53 regions according to correlations among the temporal

profiles on correct static trials. This initial clustering resulted in

34 regions with overall positive activity and 19 regions with

overall negative activity (Supplementary Fig. 1). While it will

ultimately be of interest to evaluate the role of regions

with negative time courses in the formation of a decision

(Donaldson et al. 2010), we focus here on regions with positive

time courses to test hypotheses derived from our previous

research (Ploran et al. 2007). A second cluster analysis was then

performed using only the 34 positive regions (Fig. 4a). Note

that this procedure produced the same ordering of regions as

the first cluster analysis and was done for illustration purposes

only. Pruning the cluster tree at a Euclidean distance of

2.5 yielded 4 distinct clusters of regions (Fig. 4a). The pattern

of activity across clusters was evaluated on TR3--7 trials in the

static condition by averaging across all ROIs in the cluster.

These data are presented in Figure 4b--e. Again, the static TR8

condition is plotted for comparison.

In one cluster (Fig. 4, red), an early onset of activity was

followed by a rapid increase in activity for all conditions, after

which activity persisted at a plateau for the duration of the trial.

Activity returned to baseline at stimulus offset, and there were

no obvious effects of TR on the pattern of time course (Fig. 4e).

Due to the absence of TR-dependent activity and the location of

these regions in the occipital lobe (Fig. 5, red regions), we

attribute this pattern of activity to low-level sensory processing

(labeled ‘‘Sens’’ in Table 2).

In a second cluster of regions (Fig. 4, green), there was

a shift in both onset and peak times according to TR, such that

earlier recognition decisions were associated with earlier onset

and peak than were later recognition decisions (Fig. 4b).

Regions in this cluster were located in or near medial portions

of the superior frontal gyrus near the pre-SMA, the anterior

cingulate cortex (ACC), bilateral aI/fO, bilateral inferior parietal

lobule (iPL), and the right postcentral gyrus (PoCG; Fig. 5,

green regions). Based on the high sensitivity of these regions to

response timing in both onset and peak measures, it is plausible

that their function is associated with the commitment to

a recognition decision (labeled ‘‘Comm’’ in Table 2). One

interesting finding was that, whereas in the past study activity

in these regions remained at baseline until TR, in this study,

there was a clear increase above baseline prior to TR.

In a third cluster (Fig. 4, blue), activity onset was early in the

trial (similar to the sensory group), but the slope of the leading

edge of activity appeared to decrease across levels of TR
(Fig. 4c). The peak in activity occurred approximately 4 s after

the recognition button press. These regions were found in

bilateral parietal lobes along the length of the IPS, middle

(mOG) and superior (sOG) occipital gyri, inferior frontal gyrus

(IFG), right ACC, and middle frontal gyrus (mFG; Fig. 5, blue

regions). The combination of an increase in activity early in the

trial and a TR-dependent rate of increase are consistent with an

accumulation account (labeled ‘‘Accum’’ in Table 2).

A fourth cluster of regions (Fig. 4, purple) was located almost

exclusively in bilateral IT, including the fusiform gyrus (Fig. 5,
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purple regions). This group showed an early activity onset

(similar to the sensory regions), with a separation in rate of

increase occurring at ~6 s. The time of peak activity correlated

with response timing (Fig. 4d). Regions in this cluster are

labeled ‘‘IT’’ in Table 2.

Because some temporal profiles from different clusters

appeared similar upon visual inspection, it is worth noting

the distance values displayed in the dendrogram in Figure 4.

The IT and accumulator clusters were the closest in Euclidean

distance (2.83). Time courses in both clusters had early onset

times, and their peak times increased with TR. These 2 clusters

were closest in Euclidean units (3.42) to the sensory cluster.

Activity in this cluster had an early onset and extended

throughout the trial. In contrast, the ‘‘commitment’’ cluster was

farthest away from the other 3, at a distance of 4.78 units. Both

onset and peak times in this cluster appeared to increase

monotonically with TR.

Analysis of Waveform Properties

Onset Times

To statistically analyze the reliability of differences in temporal

profiles across the clusters, time of signal onset and a measure

of initial slope were computed (see Materials and Methods).

The signal onset measure was the time point at which signal

significantly rose above the baseline estimate in each region

(Fig. 6a). In the sensory cluster, onset occurred early and

showed little difference across TR3--7 (mean = 2.09, 1.51, 1.85,

2.00, 1.90 s, respectively). The fusiform/IT cluster also had

relatively early onset times with little difference across TRs

(mean = 2.85, 1.95, 2.68, 2.91, 2.80 s). The accumulator cluster

had slightly later onset times, but there was little change in

values across TRs (mean = 2.50, 2.67, 3.14, 3.12, 3.20 s). The

commitment cluster had the longest onset times, and in

contrast to the other cluster the onsets increased across levels

Figure 3. Task-related activation and TR-dependent time courses from representative ROIs. In the middle panels, horizontal anatomic slices are overlaid with above-threshold
voxels in the main effect of time map (see text for details). Reliability of activation is denoted by the scale bar in standardized units. ROIs were derived from this map. Time
courses from conditions TR3--8 are plotted from right cuneus (a), right fusiform gyrus (b), right superior occipital gyrus (c), and right anterior insula (d) ROIs.
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of TR (mean = 3.97, 3.90, 5.10, 4.6, 6.0 s). An ANOVA of onset

times testing for differences between the 4 clusters (see

Materials and Methods) displayed a significant main effect of TR
(F4,120 = 10.53, P < 0.0001), indicating that onset times differed

across levels of TR. This effect was modulated by cluster, as

revealed by a significant interaction of TR with cluster (F12,120 =
3.68, P < 0.0001), indicating that the pattern of onset times

differed reliably across clusters. The main effect of the

between-factor cluster was also significant (F3,30 = 25.03, P <

0.0001). Subsequent pairwise t-tests comparing each pair of

clusters displayed significant differences in onset times

between commitment ROIs and all other groups (all P <

0.0001), sensory and accumulator groups (P = 0.006), and

sensory and fusiform/IT groups (P = 0.05), but no differences

between the fusiform/IT and accumulator groups (P = 0.39).

To test whether onset times increased linearly with TR, 1 3 5

repeated-measures ANOVAs were computed for each cluster.

Onset times in sensory ROIs differed across TR (F4,20 = 4.05, P =
0.014) but did not follow a linear trend (F1,5 = 0.71, P = 0.71).

Fusiform/IT ROIs showed a significant main effect across

recognition times (F4,28 = 10.85, P < 0.0001) and a marginal

linear trend (F1,7 = 5.38, P = 0.053). Subsequent pairwise

comparisons in this cluster revealed that this effect and linear

trend were due to the onset times of TR4, which were

significantly lower than the values for the other TRs (all P <

0.01). The accumulator group did not show a significant main

effect (F4,36 = 2.01, P = 0.12) but showed a reliable linear trend

(F1,9 = 8.42, P = 0.018). Commitment ROIs, conversely, showed

both a significant main effect (F4,36 = 9.97, P < 0.0001) and

upward linear trend (F1,9 = 29.66, P < 0.0001), indicating that

onset times in regions of this group showed a strong linear

increase as a function of TR.

Slope Measurements

The slope of the leading edge of the time course was computed

within predefined time windows (Table 1) to test for a de-

creasing rate of accumulating activity across TR (Fig. 6b). Slope

measurements did not change across TR for sensory (mean =
0.34, 0.29, 0.33, 0.31, 0.30% signal change/s), fusiform/IT

(mean = 0.21, 0.17, 0.18, 0.16, 0.16% signal change/s), and

commitment time windows (mean = 0.10, 0.09, 0.07, 0.11,

0.10% signal change/s). In contrast, mean slope measurements

decreased across TR for the accumulator time windows

(mean = 0.14, 0.14, 0.11, 0.09, 0.07% signal change/s).

An ANOVA testing mean differences across the 5 TRs and 4

clusters (see Materials and Methods) revealed a significant main

effect of cluster (F4,60 = 39.49, P < 0.0001), a main effect of TR
(F4,60 = 5.67, P = 0.001), as well as a cluster by TR interaction

(F16,240 = 2.47, P = 0.002), indicating that slope measurements

differed across TR and cluster. Subsequent pairwise compar-

isons of cluster revealed differences between the sensory

cluster and all others (all P < 0.0001) and between the

fusiform/IT slope and all other clusters (all P < 0.01). The mean

slope comparison between the accumulator and commitment

groups was not statistically significant (P > 0.11).

Separate 1 3 5 ANOVAs were computed to examine within-

cluster effects of TR and identify whether there was a decrease

in slope across TR. There was no main effect of TR in the

sensory cluster (F2.56,38.34 = 0.66, P = 0.56), and there was no

linear trend (F1,15 = 0.44, P = 0.51), indicating that the mean

slope measurements in this cluster did not change across TR.

Similarly, the fusiform/IT cluster showed neither a main effect

of TR (F2.18,32.66 = 0.62, P = 0.56) nor linear trend (F1,15 = 2.16,

P = 0.16). Accumulator ROIs exhibited a main effect of TR
(F2.36,35.35 = 6.11, P = 0.004) and decreasing linear trend across

TR (F1,15 = 12.86, P = 0.003), indicating that the slope in these

ROIs was steep for early response time courses and became

progressively shallower for later TRs. Conversely, commitment

ROIs displayed neither a main effect (F2.17,32.60 = 0.54,

P = 0.602) nor a linear trend (F1,15 = 0.07, P = 0.792),

indicating that the slope did not change across TR for ROIs in

this cluster. In sum, the statistical analyses support the

qualitative observations noted in the section describing the

cluster analysis.

Comparing Slopes from TR3--7 and TR8 Static Trials

Next we compared the slopes of the initial increase in activity

for correct TR3--7 trials and TR8 trials in each cluster (see

Materials and Methods). As shown in Figure 4b--e, the initial

slope on TR8 trials was similar to the slope on TR3--7 trials in the

sensory and fusiform/IT clusters but less in the accumulation

cluster. Visual inspection of activity in the commitment cluster

(Fig. 4b) suggests that the slope on TR8 trials was also less than

TR3--7 trials, though we predicted the opposite. However, an

ANOVA revealed a significant main effect of TR only for the

accumulator cluster (F2.43,34.04 = 8.60, P < 0.01). Subsequent

Table 2
ROIs with reliable increases in correct trial-related activity

ROI (#) Anatomic
location

Current study Ploran et al. (2007)

x y z BA Cluster x y z BA Cluster

1 L cuneus �28 �91 �2 18 Sens �19 �99 �2 18 Sens
2 R inf occipital G 29 �88 �5 18 Sens 1 �93 �6 17 Sens
3 R mid occipital G 31 �87 7 19 Sens — — — — —
4 L lingual G �19 �92 �10 18 Sens �10 �99 �5 18 Sens
5 R cuneus 22 �94 2 17 Sens 16 �99 �1 18 Sens
6 R fusiform G 44 �63 �6 37 IT 49 �61 �9 37 Accum
7 R inf occipital G 40 �76 �5 19 IT — — — — —
8 R intraparietal S 27 �55 45 7 Accum 34 �57 47 7 Comm
9 L fusiform G �40 �65 �11 19 IT �42 �63 �9 37 Accum
10 R mid occipital G 33 �80 19 19 Accum 30 �78 17 19 Sens
11 R intraparietal S 25 �68 40 7 Accum — — — — —
12 R sup occipital G 30 �73 28 19 Accum 31 �71 29 19 Accum
13 L mid occipital G �32 �85 11 19 Sens — — — — —
14 L fusiform G �29 �70 �11 19 IT �32 �89 �9 18 Accum
15 L precuneus �24 �71 34 19 Accum �30 �78 21 19 Accum
16 L intraparietal S �24 �57 45 7 Accum �26 �68 38 7 Accum
17 R inf parietal 39 �40 45 40 Comm 49 �48 47 40 Comm
18 L fusiform G �30 �55 �15 37 IT �31 �39 �14 20 Accum
19 L ant insula �30 19 2 13 Comm �32 22 01 13 Comm
20 R ant insula 30 21 4 13 Comm 33 22 �2 13 Comm
21 R fusiform G 31 �68 �9 19 IT — — — — —
22 L med frontal G �7 13 48 6 Comm �1 14 51 6 Comm
23 R med frontal G 5 15 47 6 Comm 1 26 42 8 Comm
24 R fusiform G 28 �46 �16 36 IT — — — — —
25 R fusiform G 33 �55 �17 37 IT — — — — —
26 L inf frontal G �43 2 32 9 Accum �46 0 32 9 Accum
27 L inf parietal �42 �42 44 40 Comm — — — — —
28 R mid frontal G 30 �8 47 6 Accum — — — — —
29 R inf frontal G 39 5 28 9 Accum 44 6 33 6 Accum
30 R postcentral G 55 �18 34 2/40 Comm — — — — —
31 L ant cingulate G �5 25 39 32 Comm — — — — —
32 R ant cingulate G 9 21 35 32 Accum 6 24 31 32 Comm
33 R inf frontal G 44 16 1 47 Comm 45 14 �3 47 Comm
34 R postcentral G 50 �23 42 2 Comm

Notes: Regions are from the current study (left half) and comparable regions found in prior work

(Ploran et al. 2007). L, left; R, right; Ant, anterior; Sup, superior; Inf, inferior; Med, medial; Mid,

middle; G, gyrus; S, sulcus; x,y,z, Talairach atlas coordinate dimensions; BA, approximate

Brodmann’s area; Sens, sensory; Accum, accumulator; IT, Fusiform/IT; Comm, commitment.

Cluster assignment determined by hierarchical cluster analysis. Anatomic locations are

approximate.
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pairwise comparisons revealed that slopes in this cluster were

less on TR8 trials than TR3, TR4, and TR5 trials (all P < 0.02) and

less on TR7 than TR4 trials (P < 0.03). No other cluster,

including the commitment cluster, demonstrated a significant

change in the initial slope (all P > 0.25).

Comparing the Slope of Increasing Activity on Shuffle and
Static Trial

An analysis of the slopes on static and shuffle trials (see

Materials and Methods) revealed no effect of trial type within

the accumulator cluster (t15 = 0.57, P = 0.57). The left panel of

Figure 7 shows the slopes for each ROI in the accumulator

cluster, plotted as a function of condition. The right panel

displays the cluster-average time courses for each condition.

Paired t-tests for the other clusters also failed to reach

significance. The results were the same when both correct

and incorrect shuffle trials were included.

Discussion

In this study, we used an extended object recognition task to

test 2 hypotheses about the nature of accumulating BOLD fMRI

signals. Critically, we found patterns of dynamically accumu-

lating signals, prior to a decision, in frontal and parietal regions

when the quantity of stimulus inputs was held constant.

Lending further support to an accumulation account, activity in

these regions was significantly greater when objects were

recognized during the masking procedure than when they

were not. We also found that shuffling objects increased

response times but did not affect the rate of accumulation of

activity in accumulator regions, suggesting that the accumula-

tion effects were not driven by task difficulty. In contrast to

past findings (Ploran et al. 2007; Wheeler et al. 2008), regions in

the inferior temporal lobes, including the fusiform gyrus, failed

to accumulate activity as defined by an early rise in activity

accompanied by a TR-dependent decrease in the slope of the

Figure 4. Hierarchical cluster analysis and averaged TR-dependent time courses. (a) The dendrogram graphically depicts the similarity of time courses for positive-going ROIs
(y-axis) in terms of Euclidean distance (x-axis) as determined by the hierarchical cluster analysis. Linkages at a small distance value depict similar time courses. The 4 ROI groups
were defined by pruning the tree at a distance of 2.5, indicated by a dotted line. Numbers in parentheses refer to the region numbers listed in Table 2. (b--e) BOLD time courses of
static trials for TR3--7 are averaged across all ROIs in each color-coded cluster group. Time courses indicate percentage signal change from baseline (0%, shown as horizontal
dotted line) over time (in seconds). Color-coded squares on the x-axis depict the subjects’ actual time of response.
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leading edge of activity. Combined, the current findings

support an accumulator account in which parietal and frontal

regions integrate sensory inputs over time. These novel

findings provide empirical support for models of perceptual

decision making in which evidence is extracted from sensory

areas, such as MT (middle temporal area) and IT, and integrated

over time in higher order processing centers (Kiani et al. 2006;

Lo and Wang 2006; Gold and Shadlen 2007). In the next

sections, we discuss the findings and their relevance to

behavioral choice.

Dissociating Accumulation and Commitment Signals

Holding stimulus quantity constant during revelation, we found

a pattern of accumulating signals in frontal and parietal regions

that were located in close proximity to the accumulator

regions described in our previous study (Fig. 4c and Table 2). In

these regions, activity onset occurred shortly after trial onset

and increased at a TR-dependent rate such that the leading edge

of activity followed a sharper leading slope for shorter than for

longer TRs (Fig. 6). This pattern of activity is consistent with an

integration-to-bound framework in which sensory choice

occurs after activity in neural ‘‘accumulators’’ reaches thresh-

old. By this account, activity should be greater (i.e., above

threshold) when items are recognized than when they are not

(i.e., below threshold). This prediction is supported by 2

observations in the current study. The first is related to the

inverse relationship between the rate of accumulating activity

and TR (as illustrated in Fig. 6b). On correct recognition trials

(TR3--7), activity was greater for items identified at a given point

in time than for items not yet identified. This can be illustrated

in Figure 4c by placing an arbitrary signal change boundary at

a relatively high level, such as 0.3% or 0.4%, and noting that

activity for a given TR condition is greater at that point in time

than for subsequent TR conditions. Second, activity was

significantly slower to accumulate during TR8 trials compared

with TR3--5. Thus, the pattern of data indicates that a failure to

recognize an object was related to insufficient levels of activity

in regions in the accumulator cluster.

The pattern of activity in the dorsal ACC, pre-SMA, iPL, and

aI/fO was broadly consistent with the previously reported

commitment pattern (Ploran et al. 2007), with increasing onset

and peak times that correlated significantly with TR. There was

also an interesting difference. Whereas in a previous study,

activity remained remarkably unchanged from baseline until TR,

in the current study, activity increased above baseline before

TR, on average (across TR) ~6 s earlier than in the previous

study. Given the earlier onset of activity, it may be difficult,

upon visual inspection, to appreciate differences in the

patterns of activity in the 2 clusters (Fig. 4b,c). However,

several findings support a dissociation. First, the commitment

ROIs clustered the furthest (in Euclidean distance) from any of

the other positive-going clusters, including the accumulator

Figure 5. Anatomic distribution of cluster groups. ROIs classified in sensory (red),
fusiform/IT (purple), accumulator (blue), and commitment (green) clusters are shown
projected onto inflated cortical surfaces using Caret software (Van Essen et al. 2001).
ROI numbers in parentheses correspond to those in Table 2. L, left hemisphere;
R, right hemisphere.

Figure 6. Analysis of waveform properties. Mean onset times (a) and slope values (b) for TR-dependent time courses are displayed as a color-coded line for sensory (red),
fusiform/IT (purple), accumulator (blue), and commitment (green) ROI clusters. Error bars indicate standard error of the mean.
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ROIs (Fig. 4a). This outcome indicates that the pattern of

activity in the commitment cluster was less correlated with the

pattern of activity in the accumulator cluster than either the

fusiform/IT or sensory clusters. Second, the slope of the leading

edge of activity in commitment regions did not change reliably

as a function of TR, as it did in the accumulator regions (Fig. 6b).

The absence of a difference in slope indicates that, despite

earlier onset times, the greatest demand for neural processing in

the commitment cluster occurred near the time of recognition.

One explanation for the earlier onset of activity in regions in

the commitment cluster is that the current task required

a greater degree of effort (e.g., stimulus maintenance in

working memory across steps, hypothesis testing, etc.) than

the gradual revelation task. This explanation is plausible

because regions in the commitment cluster have often been

implicated in various aspects of cognitive control. For example,

the ACC and aI/fO have been implicated in task-level control

(Dosenbach et al. 2006; Dosenbach et al. 2008; Velanova et al.

2008; Nelson et al. 2010), awareness (Craig 2009), and

performance monitoring (Carter et al. 1998; Ito et al. 2003;

Ridderinkhof et al. 2004; Oliveira et al. 2007; Eichele et al. 2008;

Wheeler et al. 2008), all of which were in greater demand in

the current task.

Domain-General and Domain-Specific Accounts

An open question about the role of accumulator and

commitment regions is their specificity of function. One

possibility is that their function generalizes across domains of

information. For example, by this account the operation of

accumulators is to integrate information over time, regardless

of source of that information. An alternative explanation is that

accumulating signals occur in domain-specific regions in which

information processing relevant to the decision occurs. The

selection of relevant information can be influenced by the

organism and the available choices and may be more useful in

some circumstances than in others. It is possible to assess the

degree of domain-specificity by observing the consistency with

which a region accumulates activity across tasks. A domain-

general account would be supported by the recruitment of

a region across different tasks involving different types of

information and response options. A specificity account would

be supported by a strict mapping between regions showing

accumulation effects and type of task and response options. In

this section, we consider domain-general and domain-specific

accounts by comparing this task with our previous task (Ploran

et al. 2007).

To begin, there were some task-related differences in the

location of regions showing commitment and accumulator

patterns of activity (Table 2). The thalamus and striatum

showed reliable commitment patterns of activity in the past

study. However, theses regions were not observed in the

present study. An inspection of the uncorrected statistical map

revealed no significant clusters of activity in thalamus and

dorsal striatum, indicating that those regions were not over-

looked by the ROI selection procedure. These regions are

commonly reported in studies of decision making, so it is

surprising that they were not active in the present study.

Another difference was that, in the current study, regions in

both right and left iPL were included in the commitment

cluster (Fig. 4, ROI #17, 27), whereas only the right iPL was

included in this cluster the previous study. The iPL ROIs were

located immediately posterior to the precentral gyrus, in

proximity to regions that have been associated with motor

behaviors directed toward a target, such as pointing and

grasping (Binkofski et al. 1998; Connolly et al. 2000; Culham

et al. 2003; Castiello 2005; Frey et al. 2005). Anterior parietal

regions are thought to be involved in computing spatial

coordinates subserving these behaviors (Culham et al. 2003),

so activity in these regions may be related to the generation of

a motor response following the commitment to a decision.

In both studies, we found an accumulator pattern of activity

in bilateral mOG, IFG, and the IPS. The left IFG region (Table 1,

#26) is close to a region reported by Noppeney et al. (2010)

that accumulated audiovisual evidence in a multimodal sensory

choice task. Two regions previously classified as commitment

regions were instead classified as accumulator regions in the

current study. These regions were located in the right superior

parietal lobe and the right dorsal ACC (Table 2, ROI #8 and #32).

The change in classification may represent between-study error

variance (i.e., ROI selection procedures) or may represent real

differences in the nature of processing between the 2 tasks.

However, these differences are minor considering that most

cluster classifications were stable across the 2 studies.

Finally, the hierarchical analysis identified a cluster of

regions with a markedly different pattern of activity than those

observed previously. Regions in this cluster were located

Figure 7. Accumulator cluster slopes on shuffle and static TR3--7 trials. Left, plotted are the static and shuffle slope values for each ROI, connected with a line. Mean values for
the accumulator cluster are shown in black. Right, the gray box shows the analyzed time window (2--14 s) for the time courses for static and shuffle VoA trials averaged across all
ROIs in the accumulator cluster.
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exclusively in or near IT and the fusiform gyrus (Fig. 4). Some

of these ROIs were near previously described IT accumulators

(Wheeler et al. 2008) but others were novel to the current task

(Table 2). Notably, the slope of the leading edge of activity

in fusiform/IT was the same across all TRs. Due to the location

of these regions in the ventral visual processing stream

(Ungerleider and Mishkin 1982; Felleman and Van Essen

1991), and correlation of peak activity with TR, it is plausible

that their initial response was related to the onset of visual

stimulation, and their later response was related to the

presence (or absence) of relevant object features. We speculate

that the between-task differences in the pattern of BOLD

activity in these regions are most likely due to strategic factors

arising from changes in stimulus presentation. In the previous

study, the overall object shape could be perceived gradually

and monotonically, providing a sense of object identity before

individual features were perceptible. This type of presentation

may have produced an increasing BOLD signal in visual regions

that respond to domain-specific requirements of object

recognition (e.g., Gauthier et al. 1997). The new masking

technique instead revealed disjointed individual features and

imparted a lesser degree of overall object shape, thus possibly

delaying activity in fusiform/IT regions until readily identifiable

features (e.g., geons) appeared (Grill-Spector et al. 2001; Haxby

et al. 2001; Kanwisher 2003). The absence of an accumulator

pattern in the fusiform/IT regions in the current study is

consistent with proposals that sensory processing areas do not

integrate information over time (Gold and Shadlen 2007).

It should be emphasized that, despite modifications in the

masking procedures, significant accumulation effects were

observed in many higher order regions, such as IFG and IPS,

suggesting a domain-general mechanism that operates across

object recognition tasks. Whereas the previous gradual

unmasking approach encouraged a passive mode of evaluation

as objects resolved on screen, the current task required an

increased demand to maintain perceptual evidence throughout

the trial. This demand may have been met by the same domain-

general neural resources used in visual working memory tasks,

represented by increased recruitment of frontal and parietal

regions. In particular, regions in or near the occipital lobes,

right superior and left iPL, the fusiform gyrus, and left middle

frontal gyrus are near those that modulate according to

information load in visual working memory tasks (Todd and

Marois 2004; Ranganath et al. 2005).

Accumulation Reflects Impending Decision Rather than
Task Difficulty

To test whether accumulation effects were modulated by

changes in attentional control, we manipulated the consistency

of object identity. Behaviorally, subjects took longer to respond

on shuffle trials, indicating that shuffle trials were more difficult

than static trials. If accumulation reflects the degree of effort

exerted during the task, we should observe greater activity on

shuffle than static trials (Heekeren et al. 2004). However, the

absence of a steeper initial slope on shuffle trials compared

with static trials (Fig. 7) indicates that the accumulating signals

do not reflect increasing attentional demands.

While the absence of slope differences supports an

accumulation account instead of an attention/effort account,

one might predict, in contrast, that the slope of activity on

shuffle trials would be less than on static trials. On shuffle trials,

subjects saw 2 different pictures and as a consequence had

fewer opportunities to gather evidence about either picture

than they did on static trials. This finding raises the possibility

that the slope of accumulating activity was not related to the

amount of evidence integrated over time. However, there are

several reasons to doubt this possibility. First, because most

subjects were unaware that the pictures were changing, they

were just as likely to attempt to integrate the disjointed

features into a single-object solution on shuffle trials as they

were on static trials. Second, because correct trials from both

conditions were analyzed according to their TR, and an

accumulator model would predicate that activity reach

threshold prior to the commitment to a decision, then there

should be no difference in the rate of accumulation. In both

trial types, recognition was accurate, reflecting an integration

to boundary of evidence about object identity, regardless of the

number of times the object was presented.

Extended Task Paradigm Complements Standard Event-
Related Approaches

The results obtained here overlap considerably with those from

other research groups using different approaches. Regions near

the anterior insula and medial frontal lobe, including the dorsal

ACC and pre-SMA, have been reported to be more active for

difficult than easy decisions in studies using line length

judgments (Grinband et al. 2006), fear-disgust discrimination

(Thielscher and Pessoa 2007), and motion discrimination (Ho

et al. 2009). In addition, the IPS has been found to be more

active for difficult decisions in motion discrimination (Ho et al.

2009) and shape prediction (Huettel et al. 2005). While our

results were consistent with the results of these rapid event-

related approaches, the extended paradigm allowed us to

examine dynamic changes in the time course despite the low

temporal resolution of the BOLD signal. The time course

analysis dissociated commitment patterns of activity in the

anterior insula and medial frontal lobe from accumulator

patterns in the IPS and prefrontal cortex, suggesting different

roles in the decision process.

It is worth noting that predictions about the relationship

between accumulating neural activity and the BOLD signal can

depend on the structure of the fMRI paradigm. In some studies

using rapid event-related designs, the magnitude of BOLD

signal has been hypothesized to reflect the rate of neural

accumulation or the amount of perceptual evidence (e.g.,

Tosoni et al. 2008; Ho et al. 2009; Kayser et al. 2010; Noppeney

et al. 2010). This prediction about the relationship between

accumulation and the BOLD signal is derived from the fact that,

in these designs, the neural events occur rapidly and the sum is

reflected in the BOLD response. Using this approach, it can be

difficult to determine whether changes in activity are due to

changes in sensory evidence or to other factors such as arousal,

task difficulty, or effort, which have been associated with

increased activity across a range of cognitive tasks (Garavan

et al. 2002; Velanova et al. 2003; Wheeler and Buckner 2003;

Grinband et al. 2006; Thielscher and Pessoa 2007). In the

gradual paradigm, because the underlying neural events are

more extended in time, different rates of accumulation can

instead be measured by changes in the slope of the leading

edge of the BOLD response. Changes in magnitude can thus be

evaluated orthogonally to slope changes and provide leverage

to address confounds such as effort and attention.
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Conclusions and Future Directions

This study tested an accumulation hypothesis of perceptual

decision making. Because stimulus inputs were consistent

throughout the trial, the observation of patterns of accumulat-

ing activity in parietal and frontal regions cannot be explained

by a systematic increase in stimulus quantity. This approach

identified a new pattern of activity in fusiform/IT regions that

was not consistent with an accumulation account. Instead, our

findings are consistent with the framework posited by Gold and

Shadlen (2007) in which evidence is extracted from sensory

processing areas and integrated over time in higher order

regions. It is worth noting here that while the current work

assumes a feed-forward mechanism of evidence accumulation,

it will be important to also consider the implications of

alternative accounts, such as recurrent feedback and attractor

states in neuronal circuits (Wang 2008). Such models can

account for the reiterative type of processing that likely

occurred in the extended paradigm.

A next step toward testing whether different patterns of

activity represent discrete stages of a decision hierarchy is to

use converging evidence from other tasks and approaches. As

noted above, if the data represent both domain-specific (e.g.,

fusiform/IT regions) and domain-general (e.g., frontal/parietal

accumulator regions) processing of evidence, we should find

consistent recruitment of domain-general areas while the

domain-specific areas change with task demands. For example,

processing of evidence in motion discrimination (e.g., Shadlen

and Newsome 2001) should involve the middle temporal area

MT instead of IT, while the integration of that evidence should

occur in parietal and frontal accumulator regions. Recent

findings from an fMRI study of motion discrimination already

offer support for this view. Kayser et al. (2010) found that

activity in/near the IPS, but not area MT, was consistent with an

accumulation hypothesis. Using a gradual approach, it would be

possible to assess accumulation dynamically as a decision forms

and determine how the amount of available evidence is related

to decision outcome.
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