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Abstract

■ The evolution of neural activity during a perceptual decision
is well characterized by the evidence parameter in sequential
sampling models. However, it is not known whether accumu-
lating signals in human neuroimaging are related to the integ-
ration of evidence. Our aim was to determine whether activity
accumulates in a nonperceptual task by identifying brain regions
tracking the strength of probabilistic evidence. fMRI was used to
measure whole-brain activity as choices were informed by inte-
grating a series of learned prior probabilities. Participants first
learned the predictive relationship between a set of shape stim-
uli and one of two choices. During scanned testing, they made
binary choices informed by the sum of the predictive strengths
of individual shapes. Sequences of shapes adhered to three

distinct rates of evidence (RoEs): rapid, gradual, and switch.
We predicted that activity in regions informing the decision
would modulate as a function of RoE prior to the choice. Activity
in some regions, including premotor areas, changed as a func-
tion of RoE and response hand, indicating a role in forming an
intention to respond. Regions in occipital, temporal, and parietal
lobes modulated as a function of RoE only, suggesting a pre-
response stage of evidence processing. In all of these regions,
activity was greatest on rapid trials and least on switch trials,
which is consistent with an accumulation-to-boundary account.
In contrast, activity in a set of frontal and parietal regions was
greatest on switch and least on rapid trials, which is consistent
with an effort or time-on-task account. ■

INTRODUCTION

The time course of neural activity during sensory decisions
has been well described by sequential sampling models
(Cisek, Puskas, & El-Murr, 2009; Usher & McClelland,
2001; Ratcliff, 1978; Link & Heath, 1975; Audley & Pike,
1965). In this class of models, momentary bits of sensory
information furnish evidence for or against available op-
tions, and a choice made when the accumulated evidence
sufficiently favors one option over another. For example, in
monkeys the rate of change in neuronal activity leading up
to a choice adheres to a diffusion process in which an evi-
dence variable changes in value over time until it surpasses
a threshold value (Ratcliff, Hasegawa, Hasegawa, Smith, &
Segraves, 2007; Glimcher, 2003; Roitman & Shadlen, 2002;
Hanes & Schall, 1996). This process, which may represent
an integration-to-bound mechanism, has been observed in
multiple areas of the nonhuman primate brain, including
the lateral intraparietal area (Shadlen & Newsome, 2001),
FEFs (Hanes & Schall, 1996), somatosensory cortex (Romo
& Salinas, 2003), and superior colliculus (Ratcliff et al.,
2007).

Changes in accumulating neuronal activity have been
found to reflect the integration of probabilistic evidence
across sequences of stimuli. Yang and Shadlen (2007)
used a variant of the weather prediction task (Knowlton,
Squire, & Gluck, 1994) in which monkeys first learned a
set of stimulus–response associations that were made to
vary in predictive strength by manipulating reinforcement
probabilities during training. At test, monkeys watched as
four of the learned stimuli were presented sequentially
and then made a response to indicate the choice favored
by the sum of probabilistic evidence. During the presen-
tation of shapes, the spiking rate of neurons in area LIP
reflected the cumulative log likelihood ratio of evidence
favoring one choice over the other, indicating that LIP
neurons integrate evidence informing the monkeysʼ deci-
sions. Comparable research in humans has identified accu-
mulating fMRI activity in the parietal lobes and other brain
regions during perceptual (Nosofsky, Little, & James, 2012;
Ploran, Tremel, Nelson,&Wheeler, 2011; Kayser, Buchsbaum,
Erickson, & DʼEsposito, 2010; Tosoni, Galati, Romani, &
Corbetta, 2008;Wheeler, Petersen,Nelson, Ploran,&Velanova,
2008; Ploran et al., 2007; James & Gauthier, 2006) and
value-based (Gluth, Rieskamp, & Buchel, 2012) decisions.
Although the fMRI results are in general accord with an
accumulation-to-boundary account, it is not clear whether
the fMRI activity is directly related to the accumulation of
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task-relevant evidence. The imaging studies have used a
relatively limited set of tasks, and the low temporal resolution
of fMRI makes it difficult to firmly relate ongoing cognitive
operations with the amount of activation measured at a
given moment in time. Furthermore, the presence of accu-
mulating neural signals may be present in certain task con-
figurations, such as when it is possible to form a concrete
motor plan during evidence sampling (Gold & Shadlen,
2003). Thus, to establish a clear relationship, it is necessary
to use converging operations across tasks and cognitive
domains.

The aim of the current study was to determine whether
the integration of probabilistic evidence in a binary catego-
rization taskmodulates humanbrain activity prior to choice.
In a modification of Yang and Shadlenʼs (2007) categori-
zation task, participants first learned a set of stimulus–
response associations with a range of associative strength
from strong to weak and were then scanned using fMRI
while they made a binary choice following the sequential
presentation of four of the stimuli. Critically, the rate of
evidence (RoE) toward a given choice was manipulated so
that, as more shapes were presented, evidence favoring
the choice grew rapidly, gradually, or switched after first
favoring the other choice. On the basis of the findings of
Yang and Shadlen (2007) and fMRI studies of perceptual
decision-making (Ploran et al., 2011; Kayser et al., 2010;
Tosoni et al., 2008; Ploran et al., 2007; Carlson, Grol, &
Verstraten, 2006; James,Humphrey,Gati,Menon,&Goodale,
2000), we predicted that activity in regions most sensitive
to the impending choice would increase more rapidly on
Rapid than Gradual than Switch trials, adhering to the
RoE. This outcome would provide additional support for
an accumulation account of neural function during human
decision-making.

METHODS

Participants

Twenty-eight right-handed participants were recruited to
the study. Eight participants were excluded from behav-
ioral and imaging analyses. One participant did not com-
plete the prescan training protocol, two were trained but
not scanned due to a technical problem with the projec-
tor, and five were discarded due to excessive movement.
The remaining participants (12 women) ranged in age
from 18 to 32 years (mean = 23.72). Informed consent
was obtained in a manner approved by the institutional
review board of the University of Pittsburgh. Participants
received $25/hr.

Procedures

Training

Stimuli consisted of six line-drawn figures (shapes) of
simple objects (Figure 1A). During 2 days of training,
the strength of association between each of the six

shapes and left (L) or right (R) hand response options
was learned by trial-and-error, with positive and negative
feedback guiding learning. Positive feedback consisted
of a purring sound accompanied by visual presentation of
the text “correct,” centered on screen. Negative feedback
consisted of a mildly unpleasant hammer on metal sound
accompanied by the text “incorrect.” Note that the term
“true accuracy” refers to the proportion of correct choices,
regardless of feedback. During training, participants were
presented one shape at a time centered on the display
and responded L or R. The display was replaced with a
feedback display for 1.5 sec after the response.
Three of the shapes favored an L response, and three

favored an R response. The strength of association was
varied across the three shapes for each hand by variably
reinforcing the stimulus–response mapping at 89%, 76%,
and 67% probability of positive feedback (Figure 1). For
example, the plus outline shape (Figure 1A) was associated
with positive/negative feedback on 89/11% of L choices and
11/89% of R choices, and the trapezoid 67/33% of L choices
and 33/67% of R choices. Participants were instructed

Figure 1. (A) Training session. Six shapes were associated to varying
degrees with left (red) and right (green) hand button presses through
trial-and-error learning. Reward percent relative to an “L” response is
noted above each shape. (B) Test design. A sequence of four stimuli
was displayed at the center of the screen in four quadrants, with
random placement from trial to trial (left). The numbers illustrate one
possible sequence of stimulus placement. A new stimulus appeared
every 2 sec in four epochs (E1–E4), beginning with trial onset at 0 sec
(right). Responses were withheld until the response window (Resp),
after which there were 16 sec of fixation, followed by a variable intertrial
interval. (C) RoEs. The cumulative probability of a left-hand response
being rewarded, p(L), is plotted across the four trial epochs for each of
the three RoE conditions. Each trial (n = 20 for each RoE condition)
has a unique path or RoE, as indicated by the plotted vectors. Vectors
for p(R) are not shown.

706 Journal of Cognitive Neuroscience Volume 27, Number 4



simply to make an L or R choice for each shape in order to
minimize negative feedback.
Training occurred in stages. The two highest proba-

bility shapes for each hand were learned to criterion in
the first stage, the next two in the second stage, and
the final two in the third stage. Progression to the next
stage occurred when an 80% blockwise true accuracy rate
was achieved, with 200 trials per block in the first stage,
300 per block in the second stage, and 400/block trials in
the final stage of training. Stages were repeated, if nec-
essary, until criterion for that stage was reached. Unlike
the standard weather prediction task format, shapes were
presented individually in random order. Previously learned
shapes were included in subsequent training stages to
reinforce associative strength. The training parameters
were established via pilot testing to achieve reasonably
accurate test performance.

Probabilistic Reasoning Test

During the scanned test, participants saw a sequence of
four individual shapes presented over 8 sec in a 2 × 2 grid
centered on the screen (Figure 1B). Their task was to
respond R or L based on the aggregate of the four prob-
abilities. The first shape appeared at time 0 sec, and each
new shape appeared 2 sec later, in a new epoch coincid-
ing with the onset of a new whole-brain fMRI measure.
Stimuli remained on the screen throughout the trial after
they appeared. Quadrant placement was determined
randomly, without replacement. Two seconds of fixation
followed the fourth epoch, after which participants had a
2-sec response window in which they made an L or R
response to indicate the choice favored by the combined
probabilities. The response window occurred from 10 to
12 sec following trial onset (Figure 1B). Sixteen seconds of
central fixation followed the response window to allow
the BOLD response to return to baseline. In total, each
trial lasted 30 sec. Trial onsets were jittered in time to
ensure clean separation of signal between trials. Because
our primary interest was in evaluating the shape of the
evolving BOLD response as probabilistic evidence accrued
over time, the within-trial event onsets (i.e., epochs and re-
sponse period) were not jittered in time. On each trial, feed-
back was determined by the aggregate of probabilities
and the R/L choice. The scanned test included 120 trials. A
widely spaced design was used to obtain a measure of the
hemodynamic response for each trial. Thus, trials could be
combined as needed or analyzed separately.
The four shape sequences during the scanned test

were configured to follow three general RoEs so that 60
eventually favored an L choice and 60 favored an R choice.
For each choice, the cumulative RoE rapidly favored that
choice (n = 20), gradually favored that choice after ini-
tially favoring the other choice (n = 20), and switched
from first strongly favoring one to eventually favoring
the other (n = 20). Another way to define these three
conditions is by when a switch occurred. In the Rapid

condition, evidence only favored one choice and never
switched. In the Gradual condition, the switch from one
choice to another occurred relatively early in the trial,
between Epochs 2 and 3. In the Switch condition, the
switch occurred later in the trial, between Epochs 3 and
4. Figure 1B depicts a Rapid trial in which the evidence for
all four shapes favors a left hand response. Examples of
the cumulative probabilities for individual trials in the
rapid, gradual, and switch conditions favoring L are de-
picted in Figure 1C (left, middle, and right panels, respec-
tively). In Figure 1C, the cumulative probability of evidence
favoring a left response ( p(L)) is plotted as a function of
epoch. Values above .5 favor a left response, whereas values
below .5 favor a right response. Note that a given shape
could appear a maximum of three times during a trial.

For some analyses, shape probabilities were converted
into weights of evidence (WoE) representing the log like-
lihood that a given shape s predicted an L choice ( p(L)).
The weights corresponding with the probability of a left
reward ( p(L)) of .89, .76, .67, .33, .24, and .11 were {w1,
w2, …, w6} = {+0.9, +0.5, +0.3, −0.3, −0.5, −0.9}.
Note that the trained reinforcement probabilities were
selected a priori to yield this set of weights. A variant of
Equation 2 from Yang and Shadlen (2007) was used to
calculate the training reinforcement rates p(L) and p(R)
for each shape:

pðLjsÞ ¼ 10w=ð1þ 10wÞ

and

pðRjsÞ ¼ 1− pðLjsÞ

where L and R are left and right responses, p(L|s) is the
probability of a reward for a left response to a given
shape s, and w is the predesignated weight for that
shape. Cumulative probabilities during the test were
computed using a more general form of the equation
(Yang & Shadlen, 2007; Equation 2), reproduced in the
Supplementary Materials. Table 1 lists three sample trials,
including the sequence of shapes in Epochs 1–4, p(L),
cumulative p(L), WoE, and cumulative WoE. On each of
the 120 trials, the RoE was drawn randomly from the
pool of stimuli. This approach produced three evidence
conditions (rapid, gradual, switch) for each choice (L, R),
resulting in six total RoE conditions.

Image Acquisition

Imagingwas conducted using a Siemens Allegra 3-T scanner.
The paradigm was presented using E-Prime (Psychology
Software Tools, Inc., Pittsburgh, PA) on a PC computer.
Stimuli were projected onto a screen at the head of the
magnet bore using a Sharp PG-M20X digital multimedia
projector. Participants viewed the stimuli through a mirror
attached to the head coil. Earplugs were worn to reduce
scanner noise. R and L index finger responses were made
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using two fiber optic glove response pads (one for each
hand). Response pads were connected to the desktop
computer, which recorded response data.

Anatomic images were obtained using a high signal-to-
noise, magnetization-prepared rapid-acquisition gradient
echo sequence (repetition time [TR] = 1540 msec, echo
time=3.04msec, flip angle=8°, inversion time=800msec).
BOLD-sensitive functional images were acquired during
performance of the task using a whole-brain spin-echo-
echo-planar T2*-weighted series (TR = 2000 msec, echo
time = 30 msec, flip angle = 79°, field of view = 200 mm,
3.2 × 3.2 mm in-plane resolution with 3.2 mm slice thick-
ness, 38 slices). The first three image acquisitions of each
of six functional runs were discarded to allow net magne-
tization to reach steady state.

Imaging Analysis

Imaging data from each participant were preprocessed to
remove noise and artifacts and compute atlas transforma-
tion parameters. Motion was corrected across and within
runs using a rigid-body rotation and translational algo-

rithm (Snyder, 1996). Whole-brain functional data were
then normalized to a mode of 1000 to facilitate inter-
subject comparisons. To account for differences in slice
acquisition timeswithin eachTR, sliceswere realigned to the
temporal midpoint of the first slice using sinc interpolation.
After preprocessing, BOLD data were resampled into

2-mm isotropic voxels and transformed into Talairach
1988 atlas space by aligning the T1-weighted image to
an atlas-transformed target T1-weighted template using
a series of affine transformations (Michelon, Snyder,
Buckner, McAvoy, & Zacks, 2003; Lancaster et al., 1995;
Talairach & Tournoux, 1988). After subject data were
in a common space, functional data were analyzed on a
voxel-by-voxel basis using a general linear model (GLM)
approach (Ollinger, Shulman, & Corbetta, 2001; Miezin,
Maccotta, Ollinger, Petersen, & Buckner, 2000; Friston,
Jezzard, & Turner, 1994). Two GLMs were created for
each participant, one to investigate the effect of RoE on
evolving BOLD activity and the other to investigate single
trial effects.
In the first GLM, BOLD data at each time point (i.e.,

each whole brain acquisition) and for each run were
modeled as the sum of modeled events and unexplained
error. Twelve trial-level regressors were coded into each
model according to response hand (L or R), RoE (rapid,
gradual, switch), and accuracy (correct, incorrect). Correct
and incorrect trials were those receiving positive and
negative feedback, respectively. Each trial was modeled
over 30 sec (16 time points) from trial onset. Within each
run, signal drift was modeled using a linear trend param-
eter, whereas baseline signal was modeled by a constant
term. One series of 16 delta functions described each of
the six event-related terms as a time series of the percent
BOLD signal change relative to the constant term. It is
important to note that, because this approach makes no
assumptions about the shape of the BOLD response,
resulting model estimates are not biased by a priori expec-
tations. The approach does assume that overlapping
BOLD-related activity from adjacent trials sums linearly at
each time point. It also assumes that the BOLD responses
for all trials of a given condition are identical. Software
developed at Washington University (FIDL) was used for
image processing and analyses (Ollinger et al., 2001).
In the second GLM, only trend and constant terms were

modeled. Trial level effects were thus treated as part of the
residual error. To analyze trial level data, the residuals were
extracted to yield a time series of data points expressed as a
percent signal change from the constant term. As in the
first GLM, the BOLD response for each trial was defined
as evolving over 30 sec (16 time points) from trial onset.
Group level imaging analyses used trial level estimates

from each participantʼs GLM in various ANOVA models,
with participant treated as a random factor and time
point as a repeated measure. This analysis produces a
different image for each term in the ANOVA model.
Uncorrected z-transformed F-statistical images from the
ANOVA were smoothed using a 4-mm FWHM Gaussian

Table 1. Three Sample Scanned Test Trials in which Evidence
Favors a Left Response by Trial End

Epoch 1 Epoch 2 Epoch 3 Epoch 4

Rapid Left

p(L) .67 .89 .76 .67

Cumulative p(L) .67 .94 .98 .99

WoE +0.30 +0.90 +0.50 +0.30

Cumulative WoE +0.30 +1.20 +1.70 +2.00

Gradual Left

p(L) .24 .76 .76 .76

Cumulative p(L) .24 .50 .76 .91

WoE −0.50 +0.50 +0.50 +0.50

Cumulative WoE −0.50 0.00 +0.50 +1.00

Switch Left

p(L) .33 .24 .89 .89

Cumulative p(L) .33 .14 .56 .91

WoE −0.30 −0.50 +0.90 +0.90

Cumulative WoE −0.30 −0.80 +0.10 +1.00

p(L) = probability of a left response being rewarded during training;
WoE = weight of evidence. �WoE is the sum of the four weights,
+2.00 for Rapid Left, +1.00 for Gradual Left, and +1.00 for Switch Left.
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filter. Each statistical image was then corrected for spheric-
ity and for multiple comparisons based on false-positive
rates determined by Monte Carlo simulation with a thresh-
old of z = 3.0 and 45 contiguous voxels, resulting in a
cluster-wise p < .05. Whereas trial level events were mod-
eled over 16 time points, a priori defined group analyses
focused on a subset of time points within the modeled
time series. Specific aspects of group analysis models are
described in more detail in the Results section.
To define ROIs, uncorrected images were smoothed

again using a 4-mm hard sphere kernel. Voxels of peak
activity were then identified using an automated algo-
rithm. Peak voxels that were separated by less than 10 mm
were consolidated by averaging their xyz coordinates.
Regions were grown around each peak by including all
contiguous voxels within 10-mm radius so that a given voxel
could be assigned to a maximum of one region. Voxels
failing sphericity and Monte Carlo corrections were then
removed from the ROIs.

RESULTS

Performance

Overall, true accuracy was high (92.4% correct) but de-
creased across levels of RoE, from Rapid to Gradual to
Switch (Table 2). The effects of RoE and response hand on
accuracy were tested by entering the percent correct data
for each participant into a 3 (Rapid, Gradual, Switch) × 2
(L, R) ANOVA. This analysis produced significantmain effects
of RoE, F(2, 19) = 29.40, p < .0001, and Response Hand,
F(1, 19) = 7.42, p < .01, and a significant interaction, F(2,
19) = 3.10, p < .05. Thus, accuracy decreased reliably
across levels of RoE and was higher for L than R responses.
Furthermore, the L > R effect was most pronounced in the
Switch condition.
The behavioral data were then analyzed to evaluate the

relationship between the sum of evidence and choice accu-
racy. The four weights from each trial were entered into a
series of logistic regression analyses, calculated separately
for each participant, and other supporting analyses as
noted below. To assess the relationship between choice
behavior and p(L), trials were divided into 10 bins accord-
ing to the sum of WoE (�WoE) from all four epochs. RoE
refers to the vector of four weights presented on each trial,
whereas �WoE refers to the arithmetic sum of the four

weights. For example, a sequence of four stimuli reinforced
at p(L) = .89, .89, .67, and .67 during training can be rep-
resented by the RoE vector of individual weights (+0.9,
+0.9, +0.5, +0.5: Rapid Left). Summing the four weights
yields �WoE = +2.8, strongly favoring an L response. The
potential range of �WoE values was from +3.60 (favoring
L) to −3.60 (favoring R). In Figure 2A, the individual

Table 2. Behavioral Performance: Percent Correct on
Probabilistic Reasoning Task

Hand

RoE

Rapid Gradual Switch

Left 99.2 (0.5) 96.0 (1.7) 88.6 (2.4)

Right 97.3 (1.0) 94.7 (2.0) 78.1 (3.9)

SEM noted in parentheses.

Figure 2. (A) Categorization performance across conditions. The
probability of responding L is plotted across 10 bins of �WoE.
Individual subject means for each bin are plotted in gray; group means
are in black. A sigmoidal fit is indicated by the dashed curve. (B) Effect
of each shape on choice. Plotted are the results of a logistic regression
assessing the relative weights between shapes, as expressed by L and
R choices on the test. Logistic coefficients reflecting subject weight are
plotted as a function of the trained weights. Individual subject data
for each shape are plotted in gray; group means are in black.
(C) Effect of each epoch on choice. Plotted are the results of a logistic
regression assessing the relative impact of epoch on choice.
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subject data are plotted as gray circles, one for each par-
ticipant and for each�WoE bin. For this analysis, data were
collapsed across the three RoE conditions. Note that there
was some variance in binned weights across participants
(indicated by the distribution of subject level data points
along the x axis) resulting from the random selection of
trial types (and thus �WoEs) from a larger pool of possible
trials. The means of the binned �WoE are denoted by
black circles. The dashed line indicates a sigmoidal fit.
The sharp transition of the fit from L to R is indicative of
overall high performance, supported by the accuracy anal-
yses described earlier.

Next, we determined the extent to which the proba-
bilities were subjectively internalized during learning, as
expressed by choice accuracy during the test. It was pos-
sible that participants would adopt a binary classification
(i.e., rule-based) strategy for each shape or sequences
of shapes (i.e., strict L or R, instead of weighted by re-
inforcement probability) or some other strategy that
would decrease the need to integrate probabilistic infor-
mation (Gluck, Shohamy, & Myers, 2002). Two analyses
were conducted to test for this possibility. In the first,
subjective weights were inferred for each shape using a
logistic regression on all trials, including errors, to evalu-
ate its influence on the choice (Yang & Shadlen, 2007,
Equation 7). If participants used a rule-based strategy
such as counting shapes, then the subjective weights
would not vary according to trained weights. This analysis
was conducted separately for each participant and pro-
duced fit values that varied substantially across participants.
However, in most participants the relative relationship
between subjective and trained weights was similar.
Numerical differences between participants were elimi-
nated by expressing each participantʼs logistic parameter
as a deviation from the absolute within-subject mean. This
procedure preserved the relative pattern of data points
within each participant. The transformed subjective weights
from this analysis are plotted as a function of the six trained
weights in Figure 2B. Gray circles denote data for each
shape from the individual subject analyses, and black
circles denote the means. The linear trend across shapes
indicates that subjective and trained weights were cor-
related, with the relationship lessened somewhat by the
weakest R shape (weight = −0.3), likely reflecting a rela-
tive under-training of the weakest stimuli. The observation
of an overall increasing linear pattern across weights was
reinforced by a significant nonparametric Spearmanʼs rank
correlation (ρ= .86, p< .0001). A 2 × 3 factor ANOVA with
Subjective weight as the dependent measure and factors
of Response hand (L, R) and Trained WoE (.3, .5, .9)
revealed significant main effects of Hand, F(1, 19) =
718.02, p < .0001, and WoE, F(2, 19) = 11.88, p < .0001,
as well as an interaction of Hand × WoE, F(2, 19) = 3.14,
p< .05. Post hoc Tukey HSD tests ( p< .05) identified that
the main effect of WoE was driven primarily by a difference
between the strongest trained WoE (0.9) and each of the
other two WoE conditions (0.5 and 0.3). The subjective

weights did not vary reliably between the two weaker
WoE conditions, indicating that these two weights had
a similar effect on behavior. In the imaging analyses,
we therefore examined the effect of both trained and
subjective WoE.
The second subjective weight analysis focused on trials

in which two of the shapes favored one choice and two
shapes favored the other choice, and �WoE was not
zero. If participants adopted a simple left/right counting
strategy, then the sum would be equal for the two choices
and performance at chance level, p(L) = .5. To test
whether performance was greater than chance, accuracy
on these trials was computed for each participant and
entered into group level one-sample Studentʼs t tests,
with participant treated as a random factor. Performance
on trials in which �WoE favored L (81.1% correct; t(19) =
8.16, p < .001) and R (70.3% correct; t(19) = 3.14, p =
.0027) responses deviated significantly from chance, indi-
cating that the weights were subjectively internalized,
though not perfectly.
Our next aim was to determine the degree of impact of

each of the four epochs on choice outcome. This aim was
particularly important because the shape in Epoch 4 of
the scanned test favored the correct choice. The presence
of this deterministic relationship was imposed by the
nature of the RoEs selected for the study and the small
set of stimuli. If participants learned this relationship,
then Epoch 4 would have a greater impact on choice than
the other epochs and the task could be successfully com-
pleted without the need to integrate probabilistic evi-
dence during Epochs 1–3. In postscan debriefing and in
pilot testing, none of the participants reported discover-
ing this relationship. Nonetheless, we wanted to rule out
the possibility objectively by testing for epoch-dependent
effects on choice behavior. We therefore evaluated the
impact of epoch on choice using logistic regression on
individual subject data. The individual data are plotted
by epoch in gray circles in Figure 2C, along with the mean
subjective weights (black circles). The mean data indicate
that, on average, there was a similar degree of influence
on choice outcome across epochs, with a slight increase
in the contribution of and greater variance in Epoch 3.
The effect in Epoch 3, however, was not significant at
α = 0.05, as tested by a one-way ANOVA with four levels
of Epoch, F(3, 19) = 2.50, p > .05.
Overall, the behavioral data indicate that performance

increased as RoE increased, that the different WoE were
learned (though not perfectly) during training and influ-
enced behavior on the test, and that participants attended
during all epochs at test.

Imaging Data

Conjunction Effects of RoE and Response Hand

Our a priori hypothesis was based on observations that
some brain regions demonstrate an evidence-dependent
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change in the rate of increasing activity from trial onset.
In the current task, evidence could accrue toward two
possible choices at different rates on different trials. To
test for response-specific effects of evidence, we searched
for regions in which preresponse activity modulated both
as a function of the RoE and the response hand. When
precisely should this modulation in activity occur? We
considered a number of factors. First, stimulus onset
typically precedes onset of the hemodynamic response
by 1–3 sec (Miezin et al., 2000). Second, evidence accrual
begins after some nominal “nondecision” processing time
related to task initiation and encoding of stimulus features
(Ratcliff, Cherian, & Segraves, 2003). Third, in past stud-
ies, we found that accumulation began at 2–4 sec from
trial onset (Ploran et al., 2007, 2011). Fourth, later time
points could be contaminated by the response. Thus,
we reasoned that RoE would begin to affect the hemo-
dynamic response by ∼3 to 4 sec from trial onset and
emerge over at least the next five time points as evidence
accrued. This timing corresponds with time points 3–7, or
4–12 sec, from trial onset and precedes the response
window. This relatively wide window should be resilient
to variance in hemodynamic response properties such
as time to onset and time to peak throughout the brain.
To test the hypothesis, the time series data from each sub-
jectʼs GLM were entered into a 3 × 2 × 5 mixed effects
repeated-measures ANOVA, with three levels of RoE
(Rapid, Gradual, Switch), two levels of Response hand
(L, R), and five levels of the Repeated measure time (time
points 3–7). Other time values were not tested. Partici-
pant was treated as a random factor. This analysis pro-
duced uncorrected and corrected (multiple comparisons
corrected and sphericity adjusted, see Methods) F-to-Z
transformed statistical maps for each term in the model,
including a main effect of time, main effects of evidence
and response hand, and interactions of Evidence × Time,
Hand × Time, and Evidence × Hand × Time. We note
that there were no significant voxels in the corrected

Evidence × Hand × Time image, indicating that there
were no mirror effects of evidence across the two hands
in which the order of effect flipped from one hand to the
other, as has been reported in some electrophysiological
studies (Shadlen & Newsome, 2001).

Of first interest was whether there was both an inter-
action of Evidence with Time and an interaction of Re-
sponse hand with Time. That is, was there an RoE effect
at each level of the response hand condition? If so, then
evidence would have a direct effect on motor planning or
execution (Cisek & Kalaska, 2010). This conjunction of
effects was not tested in the ANOVA model. Therefore,
ROIs were formed by identifying voxels showing both
interaction effects at Z = 3.09 ( p < .001) and defining
ROI masks using the approach described in the Methods
section. Voxels not surviving multiple comparisons and
sphericity corrections were removed from ROIs. This
procedure identified six ROIs (Table 3). The ROIs were
located at the inferior aspect of the right central sulcus,
the insula near BA 13, and the medial frontal gyrus in
BA 6 (premotor). To evaluate the pattern of data across
conditions, the full time series (the 16 time points mod-
eled in the GLM) for each condition was extracted from
each ROI. Figure 3 displays the ROIs on inflated cortical
surfaces of the left and right hemispheres, along with the
group mean time series data for each of the six condi-
tions from three of the ROIs in Figure 3A–C. The stimulus
window is demarcated by a gray rectangle. Note that the
placement of the window on the x axis is in real time rela-
tive to trial onset and thus does not factor in the 1–3 sec lag
in hemodynamic response. In most ROIs, such as right
inferior postcentral gyrus (∼BA 40), left medial frontal
gyrus (∼BA 6), and right insula (BA 13), the preresponse
modulation by hand and RoE was quite evident upon visual
inspection and persisted until at least the peak of the
evoked response (Figure 3A–C). In many of these regions,
there was a clear difference related to both hand and RoE
by 10 sec from trial onset. Notably, increases in activity in

Table 3. Regions with Conjunction of Evidence × Time and Hand × Time Interactions

# ∼Anatomic Location Hemisphere ∼BA x y z #Vox

Sp. Rho

L R

1 Inf postcentral gyrus (3A) R 40 56 −31 24 167 .28* .31*

2 Medial frontal gyrus (3C) L 6 −7 −20 51 154 .19 .34*

3 Insula (3B) R 13 37 −22 17 97 .38* .21

4 Insula R 13 37 −3 15 28 .31* .33*

5 Thalamus R NA 14 −22 11 53 .03 −.20

6 Medial frontal gyrus R 6 1 −18 53 22 .23† .31*

7 Medial frontal gyrus (3D) R 6 7 −20 51 154 .27* .43*

Anatomic locations and Brodmannʼs areas are approximate. xyz = Talairach 1988 atlas coordinates of ROI peak voxel. # = region number; #vox =
number of voxels in ROI; Sp. rho = Spearmanʼs rank order correlation coefficient. *p < .05. †05 < p < .10. () = ROI time series data displayed in
Figure 3. Region #7 is the same as Region #2, but flipped into the right hemisphere for exploratory analysis. Post = posterior; Inf = inferior; D =
dorsal; R = right; L = left; LR = bilateral; NA = not applicable.
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five out of the six regions, including those displayed in
Figure 3A–C, were preceded by decreased activity relative
to baseline.

One interesting outcome from this analysis was the lack
of a bilateral representation that would be expected in a
task encouraging bimanual preparation. For example, the
left medial frontal ROI near BA 6 is in putative premotor
cortex, likely SMA, and was more active for contralateral
(right) than ipsilateral (left) responses. The effect of hand
and RoE in this region is thus potentially related to the
preparation to make right-hand responses. What about
the preparation to make a left-hand response? If function
is related to motor planning, there should be a bilateral
medial frontal representation. To test whether a similar
effect occurred in the right hemisphere, a right homo-
logue (Table 3, ROI #7) of the left medial frontal ROI
was created by flipping the sign of the x coordinate from
negative to positive and time series for the six RoE ×
Response Hand conditions were extracted from the
ROI. As shown in Figure 3D, the pattern of RoE effects
in this ROI was quite similar to the left medial frontal ROI
(Figure 3C), but with the hand effects reversed (left >
right).

RoE

Because the RoE effects observed in the conjunction
analysis may have been driven by response-independent
processing at earlier, nonmotor, stages of processing
(Gold & Shadlen, 2007), we searched for such regions

by looking for an interaction of Evidence × Time, but
no effect of hand. Using procedures described in the
Methods, 72 ROIs were defined from the Evidence ×
Time image from the ANOVA noted above. Of the 72
ROIs, there was a significant Evidence × Time interaction
and a nonsignificant Hand× Time interaction in 61 regions.
The 61 ROIs are displayed on an inflated cortical surface in
Figure 4. Regions with a significant hand effect (R <> L) at
time points 3–7 are noted in Tables 4 and 5. Signal change
in some of the 61 ROIs changed at a rate that was most
consistent with an information accumulation to boundary
account, following the order Rapid > Gradual > Switch
(abbreviated hereafter as “RGS”) percent signal change
from the baseline term. Most ROIs showed the opposite
pattern, Switch>Gradual > Rapid (SGR). In Figure 4, ROIs
showing an RGS pattern (n = 16) are in green (Table 4)
and ROIs showing an SGR pattern (n = 45) are in red (see
Table 5 for a partial list of the most reliable ROIs).
ROIs with an RGS pattern (and no effect of Hand) were

found in and around the left and right Sylvian fissure,
including ROIs near the superior and middle temporal gyri
(BA 22, BA 39) and left insula (BA 13). Other regions
included ventral ACC (BA 32), paracentral lobule (BA 31),
and bilateral occipital/temporal cortex (BA 19/BA 37). RoE
time series data from four of these regions, collapsed
across the nonsignificant response hand factor, are shown
in Figure 4A–D (Table 4, ROI #13, #47, #19, and #35,
respectively).
ROIs with an SGR pattern were found in bilateral supe-

rior (BA 6, BA 8) and middle (BA 6) frontal gyrus, insula

Figure 3. ROIs with a
significant interaction of both
RoE × Time and Response
Hand × Time over time points
3–7 (Table 3). On the right side,
ROIs are projected onto lateral
(top right) and medial (bottom
right) inflated cortical surfaces
using Caret software (Van Essen
et al., 2001) and the PALS-B12
atlas (Van Essen, 2005). Different
ROIs are indicated by different
shades. Time series data from
three of the ROIs are shown in
A–C, beginning at trial onset
(time 0 sec). Time points 3–7 are
indicated by a gray rectangle.
(A) Right inferior postcentral
gyrus. (B) Right posterior insula.
(C) Left medial frontal gyrus.
(D) The right hemisphere
homologue of the left medial
frontal ROI. The inset shows the
region at Talairach z coordinate=
52. PrCG = precentral gyrus;
PoCG = postcentral gyrus;
L = left hand response; R = right
hand response; RH = right
hemisphere; LH = left
hemisphere.
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Table 4. Regions with Early Rapid > Gradual > Switch Activity

# ∼Anatomic Location Hemisphere ∼BA x y z #Voxels Hand

13 Sup. temporal G (4A) L 22 −54 −5 4 198 ns

16 Inf. parietal lobule R 40 58 −36 26 267 **

17 Sup. temporal G R 22 59 −42 6 169 ns

19 Mid occipital G (4C) R 19/37 50 −66 8 141 ns

23 Anterior cingulate cortex R 32 2 40 −4 139 ns

25 Insula R 13 35 1 16 77 *

30 Sup. temporal G R 22 52 0 5 240 **

32 Sup. temporal G L 22 −58 −37 17 229 ns

35 Mid temporal G (4D) R 39 55 −54 11 144 ns

38 Paracentral lobule L 31 −5 −18 43 182 ns

43 Postcentral G L 43 −51 −13 18 59 ns

47 Mid occipital G (4B) L 19/37 −52 −63 8 66 ns

52 Insula L 13 −37 −4 15 78 ns

58 Sup. temporal G L 21 −51 −6 −8 65 ns

59 Medial frontal G/SMA L 6 −7 −21 56 52 *

64 Mid temporal G R 22 47 −43 7 76 ns

G = gyrus; Mid = middle; () = ROI time series data displayed in Figure 4. Hand = results of t test on Left and Right conditions on activity at time
points 3–7. **p < .001. *p < .01. ns = not significant.

Figure 4. Lower left: ROIs
showing a significant RoE ×
Time interaction over time
points 3–7. Time series data
from the three RoE conditions
(collapsed across response
hand) are plotted from five
ROIs, including (A) left superior
temporal gyrus, (B) left middle
occipital gyrus, (C) right
middle occipital gyrus, (D) right
middle temporal gyrus, and
(E) left superior frontal gyrus
(pre-SMA). L = left; pCG =
precentral gyrus; MFG =
middle frontal gyrus;
MeFG = medial frontal gyrus;
aI = anterior insula; Ins =
insula; IPS = intraparietal
sulcus; STG = superior
temporal gyrus; MTG = middle
temporal gyrus; mOcc = middle
occipital; precun = precuneus;
CN = caudate nucleus;
Thal = thalamus; CalcS =
calcarine sulcus.
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(BA 13), caudate nucleus, thalamus, and large sections of
the superior and inferior parietal lobes (BA 7, BA 40).
Figure 4E displays a typical example of the SGR pat-
tern, from an ROI on the medial wall of the frontal
lobes, near the pre-SMA (Table 5, ROI #1). Notably,
the pattern of preresponse activity in RGS regions was
in opposition to the pattern we would expect if pro-
cessing were related to ongoing difficulty or effort. An
effort account is more consistent with the SGR ROIs in
which activity was greater in magnitude and duration
on Switch than Rapid trials (with Gradual often falling in
between). By design, the Switch trials were more difficult
than the Rapid trials.

Is �WoE Related to Peak Activity?

As shown in Figure 3, RoE modulated activity prior to the
response window. In some cases, the modulation per-
sisted until activity returned to baseline. The largest mod-
ulation occurred when activity peaked, at approximately
16–18 sec from trial onset. Because �WoE varied markedly
in the Gradual and Switch RoE conditions, it is possible that
some variance in peak signal change was due to �WoE.
Note that �WoE was almost always near the maximum,
±3.6, in the Rapid condition (�WoE is proportional to
cumulative p(L) in Epoch 4 in Figure 1C). We next tested
whether trial-by-trial peak signal change in the seven regions
listed in Table 3 was related to �WoE. This analysis was

made possible by use of a widely spaced design in which
a single trial activity could bemeasured (seeMethods). Peak
signal change on each trial was computed by averaging
across time points 8–9, corresponding with 16–18 sec after
trial onset. Single trial time series data from one participant
and one ROI (left medial frontal gyrus, ∼BA 6; Table 3,
ROI #2) are displayed horizontally in the heat map in
Figure 5A. Time series are orderedby�WoEalong the y axis,
with percent signal change indicated by color code (see
legend). The window used to estimate peak activity is
encompassed by the rectangle. The heat map shows greater
peak activity on R (�WoE < 0) than L (�WoE > 0) trials.
However, the figure also shows that within each response
hand condition, peak activity tended to increase as �WoE
deviated from 0. This effect can be seen more clearly in
Figure 5B, which plots the peak signal estimate for each trial
(same region, same participant) as a function of �WoE.
A general upward trend was observed for both choices,
R and L, as�WoE becamemore positive andmore negative.
To test the consistency of this effect across participants and
ROIs, trials were binned into six levels of �WoE for each
participant (three levels for each response hand) and at
the group level were entered into separate Spearmanʼs
rank order correlation analyses for each choice. Binned data
from the same leftmedial frontal ROI are shown in Figure 5C
and from the right inferior postcentral gyrus ROI (Table 3,
ROI #1) in Figure 5D. Peak activity in the flipped medial
frontal gyrus ROI in the right hemisphere (Table 3, ROI

Table 5. Most Reliable Regions with Early Switch > Rapid Activity

# ∼Anatomic Location Hemisphere ∼BA x y z #Voxels Hand

1 Sup. frontal G (4E) L 6 −2 13 55 405 ns

2 Sup. frontal G L 8 −2 23 49 399 ns

3 Insula L 13 −31 21 3 230 ns

4 Insula R 13 32 19 3 257 ns

5 Precentral G L 6 −48 −2 38 307 ns

6 Precuneus L 7 −6 −71 42 397 ns

7 Caudate L NA −10 0 13 239 ns

8 Caudate R NA 11 4 10 220 ns

9 Thalamus R NA −8 −14 9 234 ns

10 Precuneus L 7 −28 −73 40 332 ns

11 Thalamus R NA 10 −16 11 234 ns

12 Sup. parietal lobule L 7 −31 −65 50 186 ns

14 Inf. parietal lobule L 40 −40 −52 43 316 ns

15 Mid frontal G L 9 −48 18 34 168 ns

18 Midbrain L NA −6 −24 −8 196 *

20 Mid frontal G L 6 −31 −6 59 260 ns

21 Mid frontal G R 6 30 −7 56 237 *

See Tables 3 and 4 legends for abbreviations.
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#7) also significantly correlated with �WoE. Of the seven
RoE-sensitive ROIs listed in Table 3, six had at least one
significant Spearmanʼs rho, indicating a rank order relation-
ship between peak activity and �WoE. Table 3 lists the
Spearman rho p values for each response hand condition
for each ROI. Unlike the direction of effect in other ROIs,
the correlation in right thalamus was negative, decreasing
signal as �WoE increased.

Subjective Weight of Evidence

The behavior analyses revealed that learning of the
weights was imperfect. The deviation of the subject
weights from the trained weights (Figure 2B) may affect
the fMRI findings reported above, in which trials were
sorted into conditions according to trained weights. To
assess whether this was the case, all trials for each partic-
ipant were recoded according to the subjective weights
that were computed for that participant via logistic re-
gression. After recoding, most trials for most participants
could be readily classified as rapid, gradual, or switch
according to our original sorting protocol. However,
some participants were missing a gradual type of trial,
and their recoded trials could be classified as only rapid
or switch. Therefore, all trials for all participants were
recoded as either rapid or nonrapid (i.e., nonrapid being
a combination of switch for some participants and switch
and gradual for the remaining participants) as deter-
mined by a hierarchical cluster analysis. The time series
data in ROIs defined using the trained weights revealed
no notable differences between the patterns of data ob-
served using the trained and the subjective weights to
categorize trials. For example, subjective weight time
series data from the right inferior postcentral gyrus, right
insula, and left medial frontal gyrus ROIs from Figure 3A–C
are displayed in Figure 6A–C. As shown, RoE effects were
also present in the subjective weight data. Furthermore,
the general shape of the time series data are comparable
between the two methods of stimulus coding, trained
versus subjective weights. Thus, we conclude that any
departure of the subjective weights from the trained
weights had little, if any, effect on the imaging results.

DISCUSSION

Using a probabilistic reasoning task in which evidence
favoring one of two possible choices accrued over time,
we found hand-independent and hand-dependent regions
that tracked the RoE prior to choice behavior. Regions
near the inferior central sulcus, insula, and the medial wall
of the frontal lobes activated earlier when probabilistic
evidence rapidly favored one choice over another than
when evidence slowly favored one choice over another.

Figure 5. Trial-by-trial relationship between sum of weight of evidence
(�WoE) and signal change in regions showing both an RoE × Time and
Response Hand × Time interaction. (A) Time series data from one
subject and one ROI (left medial frontal gyrus; Table 3, ROI #2) are
plotted horizontally, sorted along the y axis by �WoE. Each rectangular
unit on the x axis represents one time point from one trial. Each line
represented the time series from one trial. Signal change at each time
point is indicated by the color bar to the right (0 = GLM constant term).
The rectangle indicates the time window used to compute peak signal
change. (B) Peak signal changes from A are plotted as a function of
�WoE. Each data point represents a single trial. (C) Same as B, but data
are binned (see text) and plotted for each subject (gray data points),
with the group mean indicated by black data points (*Spearmanʼs
rho < .05). (D) Same as C, but for the left inferior postcentral ROI
(Table 3, ROI #1).

Figure 6. Subjective-weighted
time series data from the
three ROIs depicted in A–C:
(A) right inferior postcentral
gyrus, (B) Right posterior
insula, and (C) Left medial
frontal gyrus. Non-R =
nonrapid, referring to a
combination of gradual and
switch type trials. Other
notations follow those in
Figure 3.
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In these regions, activity was influenced both by RoE and
response hand prior to the choice response. The findings
cannot be attributed to differences in the strength of visual
input because sensory input on all trials was four shapes.
The effects also cannot be attributed to the execution of
motor behavior or to the evaluation of feedback based
on performance because activity related to those events
occurred later in the trial. The RoE-dependent effects
appeared instead to be related to the formation of an
intention for potential action based on the available evi-
dence (e.g., Cisek & Kalaska, 2005).

In a separate analysis, we found that activity in regions
near the occipital/temporal lobe junction and superior/
middle temporal gyrus increased according to RoE (R >
G > S) (and other regions, see Table 4), but not response
hand. Preresponse activity in these regions was greatest
on Rapid trials, when evidence favoring a choice accu-
mulated rapidly, and least on Switch trials, when evidence
favoring a choice occurred late in the trial. These regions
may function as an intermediate stage of processing be-
tween bottom–up analysis of relevant information and later
response planning. There is support for multiple stages of
response in the literature. For example, Bernier and col-
leagues used a bimanual reaching-to-target task with fMRI
and EEG (Bernier, Cieslak, & Grafton, 2012). Targets were
to the left or right of midline, and participants were in-
structed on each trial to reach to the target with either the
left or right hand. The results support a two-stage process
in which one set of frontal and parietal regions code the
target independently of arm and another set code the
arm-specific motor intention after the reach instruction.

These analyses also revealed two distinct patterns of
RoE modulation prior to the behavioral response win-
dow. The most common pattern was one in which signal
change was greater on Switch than on Rapid trials, with
activity on Gradual trials often intermediate (Table 5,
Figure 4). This S > G > R pattern was found in the
medial frontal gyrus near the pre-SMA, anterior insula,
IPS, caudate nucleus, and thalamus (among other
regions) and is most consistent with an effort or time-
on-task account. Indeed, the pattern is identical to the
buildup of activity in visual cortex on 1-trial, 2-trial, and
3-trial sequences of flickering checkerboard stimuli re-
ported by Dale and Buckner (1997; see Figure 4A) in
their selective averaging experiment. It seems most likely
that the operations performed by these regions were
repeated or continued as long as uncertainty about the
choice persisted. The findings are not consistent with
an information accumulation account because signal
change during time points 3–7 was greatest on the switch
condition, in which evidence favoring one choice over the
other was most ambiguous. The function of these regions
may be to support task maintenance operations, such as
attention, working memory, and mental calculation. Inter-
estingly, the observation of accumulating activity has not
been pervasive in the single unit physiology literature. For
example, in a motion discrimination task, Gold and Shadlen

(2003) found accumulating signals in the FEFs when sac-
cade target locations were known during motion presen-
tation, but not when target locations appeared after the
motion stimulus. Bennur and Gold (2011) later found
accumulating activity in some LIP neurons but not others
when target locations appeared after the motion stimulus.
Thus, accumulation effects in frontal and parietal areas
are not observed under all circumstances.
Regions showing the opposite, R > G > S, pattern

independently of response hand (Table 4, Figure 4) were
located primarily in the occipital and temporal lobes. The
locations suggest a role in processing of visually and
semantically relevant information. For example, the bi-
lateral ROIs near the middle occipital/temporal border
(BA 19/BA 37) are near regions that have been prefer-
entially activated for visual stimuli over other modalities
(Lepage, McIntosh, & Tulving, 2001; Stevens, Skudlarski,
Gatenby, & Gore, 2000). As indicated by visual inspection
in Caret and by comparison with published coordinates,
the regions are lateral and anterior to putative motion-
sensitive area MT (e.g., Shulman et al., 1999). They also
do not appear to be located near regions typically asso-
ciated with the default mode network, in which activity
decreases during goal-directed behavior (Greicius, Krasnow,
Reiss, & Menon, 2003; Raichle et al., 2001). Similar regions
have been reported during visual observation of hand
movements (Grosbras & Paus, 2006) and to evaluating
the emotional aspects or the relevance of visually pre-
sented stimuli such as body parts (hands, faces), photos,
and concept words (Grosbras & Paus, 2006; Cunningham,
Raye, & Johnson, 2004;Ochsner et al., 2004;Gorno-Tempini
et al., 2001). The left anterior superior temporal and the
right middle temporal ROIs have been associated with
speech and language (Meyer, Alter, Friederici, Lohmann,
& von Cramon, 2002; Binder et al., 2000). However, some-
what surprisingly, both regions have also been associated
with the learning of reward contingencies (Hartstra,
Oldenburg, Van Leijenhorst, Rombouts, & Crone, 2010;
Knutson, Wimmer, Kuhnen, & Winkielman, 2008) and
value inference (Hampton, Bossaerts, & OʼDoherty, 2008;
Knutson,Wimmer, Rick, et al., 2008) during decision-making
tasks. These regions may have played a role in the value
assessment of integrated probabilistic information.
Surprisingly,wedid not find thepredictedRoE-dependent

accumulation effects prior to the response. The pattern of
RoE-dependent activity observed here differed from the
pattern reported in experiments using a gradual reveal
paradigm (Carlson et al., 2006; James & Gauthier, 2006;
James et al., 2000). For example, in past studies of object
identification (Ploran et al., 2007, 2011; Wheeler et al.,
2008), objects were gradually revealed from under a mask
and participants made a recognition response when they
were reasonably confident about the identity of the object.
It was assumed that the timing of the recognition re-
sponse, relative to trial onset, would reflect the degree of
evidence influencing identification and hypothesized a
diffusion-like response that would be marked by an early
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onset of activity followed by an evidence-dependent
change in BOLD activity, with a faster rate of change when
object recognition was early and a slower rate when object
recognition was late. This pattern of fMRI activity, observed
in a number of frontal, parietal, and temporal regions in
previous studies, is qualitatively consistent with evidence-
dependent patterns observed at the neuronal level using
single unit recordings in monkeys (Shadlen & Newsome,
2001; Hanes & Schall, 1996). In the current task, however,
there was no sign of the accumulation pattern described
above. Instead, activity typically decreased initially after
trial onset before increasing as a function of RoE.
There are several potential explanations for this unusual

finding. First, the probabilistic reasoning task likely re-
quired greater top–down, controlled, processing. In our
object identification studies, objects were gradually re-
vealed and participants needed only to passively view the
screen and wait for sufficient accumulated information
before committing to a response. In the present task, par-
ticipants integrated and maintained probabilistic infor-
mation over time, which required the completion of a
sequence of mental computations. The persistent load
on executive functions such as working memory and men-
tal calculationmay havemasked bottom–up effects. Indeed
it is for this reason that Ratcliff and others have argued that
diffusion models apply to rapid decisions, typically under
1.0–1.5 sec, and single-stage decisions (Ratcliff & McKoon,
2008). Note, however, that other models have successfully
accounted for multiple stage decisions (Gluth et al., 2012;
Lee & Cummins, 2004), and we have found that a variant of
Ratcliffʼs diffusion model (Wiecki, Sofer, & Frank, 2013) fit
perceptual discrimination data from 6-sec trials (Dunovan,
Tremel, & Wheeler, 2014). A second explanation is that the
need to withhold a response to the end of the trial affected
the timing of activity. In our past studies, participants could
commit to a decision at any time in the trial and respond at
that point in time. However, in the current task, the
response was withheld until the response window. With-
holding a response increases demands on working mem-
ory, which could introduce top–down modulation of the
accumulation process. A third possibility is that the number
and nature of choices influences strategy. The current task
was a two-choice forced-decision task, whereas the prior
object recognition study was more consistent with detec-
tion task. In the current task, competition between the
two choices, perhaps a form of push–pull mechanism,
may have influenced the shape of the time series profile.
Indeed, the initial decrease in activity observed in many
RoE-dependent regions (Figures 3A–D and 4A–D) suggests
the presence of competitive inhibition during the task,
perhaps arising from contralateral homologous regions of
motor cortex (Ferbert et al., 1992). At present, there is in-
sufficient data to discriminate between these explanations.
Of final note, the data were not entirely consistent with

those of Yang and Shadlen (2007). Specifically, we did
not find parametric RoE effects tracking the strength of
evidence (R > G > S) in the intraparietal sulcus, near

the human LIP analogue. IPS regions instead were most
active when RoE was most ambiguous (Figure 4). While
there were undoubtedly different outcomes due to dif-
ferences in techniques and species, it is worthwhile dis-
cussing task differences that may have also contributed to
the discrepant findings. Most notably, monkeys learned
to associate each shape with a color target that could
appear on either side of fixation at test and indicated
responses via saccade. In our task, a manual choice (L, R)
was tightly coupled with each shape during training and
reinforced during the task. Thus, key differences between
tasks are the output modality (eye vs. hand) and fore-
knowledge of the stimulus–response mapping. Thus the
evidence-dependent effects in the two studies may reflect
task specificity, occurring in the appropriate motor system
(Bernier et al., 2012). For example, Gluth and colleagues
(2012) used a stock-purchasing task in which evidence
for or against the stock purchase accrued over time and
found evidence-dependent effects in primary motor areas.
Task differences may also explain why the IPS, which has
been linked to evidence accumulation in other fMRI stud-
ies (Ploran et al., 2007, 2011; Kayser et al., 2010; Tosoni
et al., 2008), did not increase proportionally with the
strength of evidence. An additional factor may be the
degree to which intention can be represented peripherally
in the form of muscle activity and centrally in the form
of neural activity (Jeannerod, 1995; Decety, Jeannerod,
Durozard, & Baverel, 1993). Motor preparation has been
shown to have small but reliable effects on muscle activity,
as measured by EMG, in the absence of a change in force
(Duclos, Schmied, Burle, Burnet, & Rossi-Durand, 2008)
and when the timing of the response is known ahead of
time (as was the case in the present study). While it can
be advantageous to establish a “motor set” (Strick, 1983)
in anticipation of limb or trunk movement, doing so in
the oculomotor system is less straightforward. Thus, it is
possible that intention for action in the present task was
less dependent on central operations because “evidence”
could be represented, in part, peripherally in the form of
muscle activity.

In summary, we found that the rate of probabilistic
evidence toward a choice modulated the evolution of pre-
response fMRI activity in hand-independent and hand-
dependent regions of the brain. Contrary to our prediction,
the temporal profile of activation in these regions was not
as clearly consistent with an accumulation-to-boundary
mechanism as in past studies and may reflect competition
between responses or a limitation on the measurement of
accumulation effects using fMRI, among other possibilities.
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