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Decision making can be conceptualized as the culmination of an integrative process in which evidence supporting different response
options accumulates gradually over time. We used functional magnetic resonance imaging to investigate brain activity leading up to and
during decisions about perceptual object identity. Pictures were revealed gradually and subjects signaled the time of recognition (TR )
with a button press. We examined the time course of TR-dependent activity to determine how brain regions tracked the timing of
recognition. In several occipital regions, activity increased primarily as stimulus information increased, suggesting a role in lower-level
sensory processing. In inferior temporal, frontal, and parietal regions, a gradual buildup in activity peaking in correspondence with TR

suggested that these regions participated in the accumulation of evidence supporting object identity. In medial frontal cortex, anterior
insula/frontal operculum, and thalamus, activity remained near baseline until TR , suggesting a relation to the moment of recognition or
the decision itself. The findings dissociate neural processes that function in concert during perceptual recognition decisions.
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Introduction
Decision making involves the formation of a set of response op-
tions, the gathering and synthesis of information, and the selec-
tion of a response. Accumulator models (Audley and Pike, 1965;
Link and Heath, 1975; Ratcliff, 1978; Ratcliff and McKoon, 1982;
Smith and Vickers, 1988; Usher and McClelland, 2001) describe
evidence gathering as a gradual process in which evidence sup-
porting different choices accrues over time. Incoming informa-
tion is evaluated and assigned to a response option, and a decision
is made when the evidence exceeds a response threshold. Accu-
mulator models have proven highly effective in describing hu-
man performance in recognition memory, lexical decisions, eco-
nomic decisions, and sensory discriminations (Ratcliff, 1978;
Busemeyer, 1985; Bundesen, 1990; Nosofsky and Palmeri, 1997;
Ratcliff and Rouder, 1998; Logan and Gordon, 2001; Ratcliff et
al., 2004; Gold and Shadlen, 2007). Such models also appear to
describe the evolution of neural spiking rates in macaque frontal
eye fields during initiation of eye movements (Hanes and Schall,
1996), the lateral intraparietal area (Shadlen and Newsome,
2001) and dorsolateral prefrontal cortex (dlPFC) (Kim and

Shadlen, 1999) during motion detection, and superior colliculus
during distance judgments (Ratcliff et al., 2003). Importantly, the
neurophysiological data provide a link between empirically de-
rived patterns of activity and evidence accumulation. The rela-
tionship between neuronal activity and choice outcome indicates
that neural processors compute behavioral decision variables by
integrating afferent inputs over time (Hanes and Schall, 1996;
Kim and Shadlen, 1999; Platt and Glimcher, 1999; Shadlen and
Newsome, 2001; Cook and Maunsell, 2002; Roitman and
Shadlen, 2002; Hanks et al., 2006; Gold and Shadlen, 2007).

Although such work has been conducted extensively in non-
human primates, very little has been done to identify the neural
mechanisms of evidence accumulation in human decision mak-
ing (Heekeren et al., 2004). We used functional magnetic reso-
nance imaging (fMRI) to study accumulation and decision mak-
ing in an extended perceptual recognition task (James et al., 2000;
Carlson et al., 2006). Perceptual recognition can occur rapidly.
To ensure that the timing of recognition responses varied suffi-
ciently to overcome the limited temporal resolution of fMRI,
noise-occluded pictures were revealed gradually over 16 s. Sub-
jects indicated when they recognized the stimulus’ identity. This
response provided an estimate of the time of recognition (TR). A
second response at the end of the trial, when the stimulus was
fully revealed, verified the accuracy (VoA) of earlier recognition.
Because we were primarily interested in studying decision pro-
cesses, VoA served as one method to control for motor activity
occurring at TR.

In an accumulator model framework, perceptual recognition
follows a period of evidence gathering and maintenance. To iden-
tify neural substrates of these time-dependent processes, we mea-
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sured blood oxygen level-dependent (BOLD) responses during,
and in the period leading up to, the time of recognition. We
hypothesized that fMRI activity related to accumulation and rec-
ognition processes would vary as a function of TR, with longer
TRs associated with later BOLD responses. We present data from
two experiments demonstrating that perceptual recognition is
accomplished in dissociable sets of brain regions that process
sensory inputs, accrue evidence, and signal recognition.

Materials and Methods
Two experiments were conducted on two separate groups of partici-
pants. Experiments 1 (Exp1) and 2 (Exp2) were nearly identical, except
that we used within-trial jitter in Exp1 and added trials in Exp2. Experi-
ment 1 was designed to identify regions of interest (ROIs) that contribute
to perceptual recognition. Experiment 2 was designed to evaluate the
time course of TR-dependent activity in those regions. We chose this
two-experiment approach for several reasons. First, comparing TR and
VoA events in Exp1 reduced the probability that ROIs would be related to
motor processing. Second, because ROIs were defined using data from
one set of subjects (Exp1) and applied to data from a different set of
subjects (Exp2), the ROI-based time course data from Exp2 were not
biased to show specific effects. Third, whereas within-trial jitter was
needed in Exp1 to separate BOLD responses associated with recognition
and VoA events, in Exp2 we eliminated the within-trial jitter to reduce
the complexity of the time courses. In all cases below, anatomical labels
and Brodmann’s areas (BAs) are approximate.

Subjects
Participants were 31 right-handed, native English speakers with normal
or corrected-to-normal vision (18 female, age 19 –29 years). Four partic-
ipants were excluded from analysis because of excessive movement, and
two were excluded because of data loss. Of the remaining 25 participants,
12 were run in Exp1 and 13 in Exp2. Some runs from four of the partic-
ipants were excluded because of excessive movement. Informed consent
was obtained in a manner approved by the Institutional Review Board of
the University of Pittsburgh, and participants received $75.

Stimuli
The pictures were 233 grayscale images (Rossion and Pourtois, 2004)
reformatted into a standard 284 � 284 pixel image with a white back-
ground. Five images were reserved for the practice session; five lists of 12
(Exp 1) or 20 (Exp 2) pictures were randomly selected out of the remain-
ing 228 pictures for task presentation. Each subject received his or her
own randomly selected list set, ensuring that no participant received
exactly the same set and order of images as another. The displayed images
subtended an average of 10.3° of the visual field and were presented
against a black background.

Behavioral paradigm
Testing consisted of five runs of a perceptual recognition task using
picture stimuli, with 12 and 20 trials per run in Exp1 and Exp2, respec-
tively. Runs were randomly intermixed with five runs from a related task,
using word stimuli, which is not included in the current report. In each
trial, stimulus revelation occurred over eight discrete steps, each corre-
sponding with acquisition of a whole-brain image (Fig. 1a). In Exp1, the
steps of revelation were randomly intermixed with six 2 s jitter periods,
resulting in an average step duration of 3.5 s. Subjectively, jitter produced
a pause of 2, 4, or 6 s between steps of revelation. In Exp2, the revelation
steps occurred every 2 s without within-trial jitter. Between-trial jitter of
2, 4, or 6 s [mean intertrial interval (ITI) � 4 s] was included in both
experiments to allow event-related analysis of individual trials.

At trial onset, pictures were covered by a black mask. The mask par-
tially dissolved at each successive 2 s interval (i.e., revelation step) until
pictures were completely revealed (Fig. 1a). Participants were instructed
to press a button when they could identify the picture with a reasonable
degree of confidence (TR). Neither speed nor accuracy were emphasized
in the TR response, and participants were not specifically encouraged to
respond before full revelation. When stimuli were fully revealed, partic-
ipants pressed the same button again only if their earlier recognition had

been correct (VoA). We used gradual stimulus revelation over other
unmasking procedures (e.g., mask degradation remains constant but
areas revealed change from step to step) because we could readily map the
quantity of stimulus input onto neural activity as a linear increase across
the trial (Carlson et al., 2006). To help factor out basic lateralized motor
signals in group analyses, response hand was counterbalanced across
participants (Thielscher and Pessoa, 2007). Psyscope X was used for stim-
ulus presentation and data collection (Cohen et al., 1993)
(http://psy.ck.sissa.it).

Image acquisition
Images were obtained using a Siemens Allegra 3T scanner. Visual stimuli
were generated on an Apple iBook G4 with PsyScope X and projected
onto a screen positioned at the head of the magnet bore using a Sharp
PG-M20X digital multimedia projector via a mirror attached to the head
coil. Earplugs dampened scanner noise. Responses were made using a
fiber optic button stick connected to the computer via an interface unit
(Current Designs, Philadelphia, PA).

Anatomic images were collected using a magnetization-prepared
rapid-acquisition gradient echo sequence [repetition time (TR) � 1540
ms, echo time (TE) � 3.04 ms, flip angle � 8°, inversion time � 800 ms,
delay time � 0 ms]. A series of whole-brain spin-echo echo-planar T2*-
weighted functional images sensitive to the BOLD contrast (TR � 2000

Figure 1. Task design and behavioral results. a, The schematic illustrates the task design. In
Exp2, revelation proceeded every 2 s until the object was revealed at the eighth and final step
(14 s). In Exp1 (not depicted), jitter occurred during revelation. Subjects pressed a button when
they could identify the picture with a reasonable degree of confidence, and again at VoA if
earlier recognition had been correct. ITIs (jitter) varied from 2 to 6 s. Revelation steps are
numbered (1– 8). b, c, Distribution of TRs for Experiments 1 and 2, in 2 s bins. The total number
of responses (SD bars) are plotted as a function of the step of revelation. In Exp1, recognition
responses were collapsed to identify ROIs. In Exp2, bins were analyzed separately to identify
time-dependent differences in BOLD fMRI activity. c, The levels of shading represent the four
main conditions of interest in Exp2 imaging analyses.
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ms, TE � 30 ms, flip angle � 79°, 2.2 � 2.2 in-plane resolution) were
collected during testing. The first three image acquisitions were dis-
carded to allow net magnetization to reach steady state.

Data analysis
General analysis. Imaging data from each subject were preprocessed to
remove noise and artifacts, including: (1) correction for movement
within and across runs using a rigid-body rotation and translation algo-
rithm (Snyder, 1996), (2) whole-brain normalization to a common mode
of 1000 to allow for comparisons across subjects (Ojemann et al., 1997),
and (3) temporal realignment using sinc interpolation of all slices to the
temporal midpoint of the first slice, accounting for differences in the
acquisition time of each individual slice. Functional data were then resa-
mpled into 2 mm isotropic voxels and transformed into stereotaxic atlas
space (Talairach and Tournoux, 1988). Atlas registration involved align-
ing each subject’s T1-weighted image to a custom atlas-transformed
(Lancaster et al., 1995) target T1-weighted template using a series of
affine transforms (Michelon et al., 2003; Fox et al., 2005).

Preprocessed data were analyzed at the voxel level using a general
linear model (GLM) approach (Friston et al., 1994; Miezin et al., 2000).
Details of this procedure are described by Ollinger et al. (2001). Briefly,
the model treats the data at each time point (in each voxel) as the sum of
all effects present at that time point (i). Effects can be produced by events
in the model (b) and by error (e). Thus, the equation for a given time
point i is yi � ai,0b0 � ai,1b1 � . . . � ai,M � 1bM � 1 � ei, where ai,M is a
coefficient relating the effect to the data at time i, and M is the number of
modeled effects. In matrix form, this becomes Y � Ab � e, where A is the
design matrix relating event types with time, b is a vector of events being
modeled, and e is a vector of noise. Estimates of the time course of effects
were derived from the model for each response category by coding time
points as a set of � functions immediately after onset of the coded event
(Ollinger et al., 2001). The numbers of time points in Exp1 and Exp2
were 9 and 16, respectively. Over each run, a trend term accounted for
linear changes in signal, and a constant term modeled the baseline signal.
Event-related effects are described in terms of percentage signal change,
defined as signal magnitude divided by a constant term. This approach
makes no assumptions about the shape of the BOLD response but does
assume that all events included in a category (e.g., accurate TR7) are
associated with the same BOLD response (Ollinger et al., 2001). Thus, we
could extract time courses without placing constraints on their shape.
Image processing and analyses were performed using in-house software
written in IDL (Research Systems, Boulder, CO).

Group z-statistical maps were derived from the GLM using voxelwise
repeated-measures ANOVA with time as a repeated factor (Winer et al.,
1991). The ANOVA implementation produces a set of main effect and
interaction images determined by the factors in the design (Schlaggar et
al., 2002). The main effect of time image identifies voxels in which the
temporal profile over the analyzed time period is not flat (i.e., a change in
signal). Interaction by time images identify voxels in which activity dif-
fers across levels of factors as a function of time. Following is a descrip-
tion of data analysis procedures specific to each experiment.

Experiment 1: region selection. The goal of this analysis was to define
regions that showed differential activity at the time of recognition (TR),
independently of when it occurred in the trial, compared with activity
elicited at the time of verification (VoA). A subset of these regions could
be specifically related to the time of recognition. Events were coded into
the voxel-level GLM as follows. Recognition responses occurring before
VoA were collapsed into a single TR condition. Trials with single re-
sponses occurring at the VoA stage (“end-trial recognition”) were coded
separately in the GLM but were not included in statistical analyses re-
ported here. Trials were sorted by self-reported accuracy (earlier recog-
nition response correct, incorrect) and coded separately according to
accuracy. A manual VoA response only occurred on trials that were
scored as correct. Trial events were modeled over nine time points (18 s)
beginning at the time of response. Overall, six regressors were coded in
each participant’s GLM: TR, VoA correct, VoA incorrect, end-trial rec-
ognition, trend, and baseline.

We wanted to identify regions associated with the recognition deci-
sion, while at the same time minimizing the extent to which the observed

accumulation effects were related to action planning and initiation. To
this end, we identified voxels in which activity differed at TR and VoA by
entering the TR and VoA events into a repeated-measures ANOVA
(Winer et al., 1991) with event type (TR, VoA) and time (nine time
points) as factors. This analysis produced a number of main effect and
interaction images. The interaction of event type and time image identi-
fied voxels in which activity related to TR and VoA differed over time. We
used this image to derive regions of interest that were (1) likely to be
involved in the recognition process and (2) unlikely to be directly related
to motor planning or execution. Functional ROI volumes were defined
by growing regions around peak voxels using algorithms developed by
Abraham Snyder (Wheeler et al., 2006). This procedure resulted in 73
ROIs (see Tables 1– 4).

Experiment 2: time course analysis. In Exp2, we removed within-trial
jitter from the revelation paradigm to evaluate the evolution of the BOLD
response over a period of regularly increasing stimulus information. The
aim was to find differential timing of activity related to different times of
recognition.

Events were coded into each participant’s GLM as follows. Recogni-
tion responses were binned into seven categories according to the step of
revelation (TR1–7) in which they occurred. These categories were further
subdivided according to recognition accuracy as denoted by the verifica-
tion response (correct, incorrect). Trials with single responses occurring
in the VoA stage (“end-trial recognition”) were not further categorized
and were coded separately in the GLM. As in Exp1, trend and baseline
terms were also modeled, resulting in 17 possible regressors (TR1–7 cor-
rect, TR1–7 incorrect, end-trial recognition, trend, constant) for each
subject. Although trials were 16 s in length, each event was modeled over
32 s (16 time points) to account for the lagged hemodynamic response.

Using ROIs defined in Exp1, we next extracted time courses for a
subset of Exp2 conditions. Behavioral data indicated that most correct
recognition responses occurred in steps TR4 –7 (Fig. 1c, shaded bars). To
maximize power, imaging analyses focused on correct TR4 –7 trials. Rec-
ognition decisions that were judged to be incorrect were also analyzed,
but the data are not included in this report. The primary focus is on
evaluating the influence of the timing of TR on the shape of the hemody-
namic response, including timing of onset, peak, and width waveform
components.

Hierarchical cluster analysis. There are several ways in which time
courses might differ between TR and VoA. Our hope was to define re-
gions fitting the different profiles in Figure 2. To objectively identify such
areas (from other response profiles), we used hierarchical cluster analysis
(Cordes et al., 2002; Salvador et al., 2005; Dosenbach et al., 2007) to
classify the time course profiles in the 73 Exp1 regions of interest (ROI).
Four time courses, each consisting of 16 time points, were extracted from
each ROI relating to recognition times 4 –7. The four time courses were
concatenated, resulting in a 1 � 64 vector of time points. A 73 � 64
matrix containing each vector from the 73 predefined ROIs was then
formed. Correlation coefficients were obtained from the relationship
between each region’s vector and all other vectors in the matrix. A “1 � r”
calculation was then performed as a means of attaining a distance mea-
sure between the regions.

From these values, a dendrogram (cluster tree) depicting the region by
region relationship was constructed. The method used to build the den-
drogram was the commonly chosen unweighted paired group method
with arithmetic mean (UPGMA) (Handl et al., 2005), which is included
in the Statistics and Bioinformatics Toolboxes available in Matlab 7.2
(The MathWorks; Natick, MA). Two additional hierarchical clustering
algorithms also exist as a means of depicting quantifiable relationships
within a dataset. These algorithms are referred to as single and complete
linkage. Single linkage defines the distance between two clusters as the
minimum distance between any two points within the clusters. This
method, however, is susceptible to chaining, which typically fails to pro-
duce functionally dissociable clusters of data. In contrast, the complete
linkage algorithm defines the distance between two clusters as the max-
imum distance between any two data points within the clusters. The rule
implementation in this algorithm often causes the cluster analysis to be
susceptible to noise that may contain several outliers. As a means of
accommodating more diverse patterns of data, UPGMA was developed
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(Eisen et al., 1998). The UPGMA algorithm defines the distance between
two clusters as the mean distance of all possible pairs of data points
between the two clusters.

To validate the clusters created by the dendrogram, a cophenetic cor-
relation coefficient (cophenetic r) is calculated. This value, which ranges
from 0 to 1, is a measure of how accurately the dendrogram represents
the original pairwise distances between each data point in the original
distance matrix. A key element of the UPGMA algorithm is that it is
designed to maximally preserve the data in the original, unmodeled cor-
relation matrix. Thus, the cophenetic r when using UPGMA will always
be greater than or equal to the cophenetic r when using single or complete
linkage (Handl et al., 2005). This is indeed the case for our dataset where
UPGMA gives a larger cophenetic r (0.8234) than either single linkage
(0.6584) or complete linkage (0.7781) approaches.

Linear interpolation. Once appropriate candidate regions were identi-
fied using cluster analysis, the next step involved quantifying aspects of
the time courses related to the hypothesized time courses of Figure 2.
Namely, we used linear interpolation to extract response onset (onset),
the time at which the response reached its greatest magnitude (peak), and
the overall length of responses, measured as the full width at half maxi-
mum (FWHM; width) of the BOLD response. Group average time
courses for each TR (4 –7) were used. We interpolated the data for several
reasons. First, the time course profiles differed substantially across ROIs
and in many cases were atypical because of the gradual revelation proce-
dure. For example, in sensory processing and accumulator ROIs, the
shape was not well represented by a gamma function (Boynton et al.,
1996). Second, signal onsets and the rising edge of the BOLD response
occurred quite rapidly in some ROIs, and the 2 s sampling rate was

sometimes insufficient to obtain clear estimates
of the timing of signal onsets. Linear interpola-
tion provided a straightforward procedure to
quantify time course parameters across a vari-
ety of different types of response profile, while
making the simple assumption that the data
values between any two time points are ade-
quately approximated by a linear fit between
those two points.

We first generated 1000 points between each
time point, connecting each pair of the 16 time
points with a straight line. This procedure
transformed each time course into a time series
of 15,000 time points. The peak was defined as
the time point at which the peak magnitude oc-
curred. Peak values always occurred at multi-
ples of the repetition time (2 s). Width
(FWHM) was defined as the distance between
the two points at which the time course was
50% of the peak magnitude, centered around
the peak. The interpolated onset was defined by
stepping backward from the peak and identify-
ing the time point at which activity exceeded a
threshold percentage of peak activity. Because
the choice of an onset threshold is not as objec-
tively defined as peak and width, we examined
four different threshold values (10, 15, 20, and
25% of peak). The results did not change mark-
edly across the four values, so we used the mean
of the four values as the onset point.

Motor analysis. A separate, supplemental
analysis targeted ROIs in sensorimotor cortex
to examine time courses presumably related to
overt manual responses, and thus likely show-
ing similar activity at TR and VoA. The aim of
this analysis was to characterize the pattern of
BOLD response across TRs that were related to
motor production so we could determine the
extent to which our procedure factored out mo-
tor processing in the decision process. ROIs
were defined using data from Exp1, and time
course data from Exp2 were then extracted

from those ROIs. More specifically, participants were divided into two
groups according to response hand (right � 6, left � 7). An ANOVA on
Exp1 TR data, with response hand (left, right) as a between-group factor,
identified a set of regions in which activity differed as a function of
response hand. We identified two ROIs encompassing precentral and
postcentral gyri (left peak � �41, �26, �58; right � �39, �20, �57)
(supplemental Figure 3, available at www.jneurosci.org as supplemental
material). Time courses from the two ROIs were highly similar, so to
increase power we merged the ROIs before extracting time courses for
TR4 –7.

Results
Behavioral results
Experiment 1
In the group analysis (n � 12), 620 of 704 picture trials received a
recognition response during steps 1–7 (TR1–7) of revelation. Of
these, 564 (91.0%) received a VoA response and were thus judged
to be accurate. The 84 recognition responses occurring in step 8
(VoA) were not scored because the pictures were by then fully
revealed, and recognition and VoA occurred simultaneously. The
distribution of responses was examined by binning recognition
times (TRs) on correct trials at 2 s intervals, time-locked to the
acquisition of a whole-brain fMRI volume. Binning produced
seven categories of response, each associated with a step of reve-
lation (TR1–7). As shown in Figure 1b, most correct responses
occurred in TR4 –7.

Figure 2. a– c, Idealized time course patterns in Exp2 related to sensory processing (a), accumulation (b), and moment of
recognition processing (c). The graphs to the left depict time-dependent signal change (arbitrary units) in perceptual recognition
at four different, successive, TRs (TR4 –7). a, In sensory areas, onset, peak, and FWHM were not expected to vary as a function of TR.
b, Because evidence gathering should begin when information becomes available, only time-to-peak in activity was expected to
vary with TR in accumulators. c, Both onset and peak times should vary in moment of recognition regions that become active at the
time of recognition. This late, discrete response should produce a narrow time course.
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Experiment 2
In Exp2 (n � 13), 985 of 1148 trials received a recognition re-
sponse before VoA. Of these, 852 (86.5%) received a later VoA
response. The distribution of binned correct trials was quite sim-
ilar to the distribution from Exp1 (Fig. 1c), with 157, 156, 247,
and 204 in TR4 –7, respectively. Data from the two studies dem-
onstrate that gradual revelation produced significant spread in
recognition times.

Imaging results

Experiment 1
To identify regions involved in perceptual recognition, but not
motor execution, TR and VoA events were compared using a
repeated-measures ANOVA (see Materials and Methods). This
analysis revealed significant differences ( p � 0.0001, uncor-
rected) between recognition and VoA activity in many regions
including bilateral calcarine sulcus, cuneus (posterior occipital),
precuneus, inferior temporal cortex (IT), posterior parietal lobes
(PPLs), anterior insula near the frontal operculum (aI/fO), stri-
atum, dorsal anterior cingulate cortex (ACC), medial frontal gy-
rus near the presupplementary motor area (meFG/pre-SMA),
and dorsolateral prefrontal cortex (Tables 1– 4). From this map,
we derived regions of interest around peak voxels (10 mm radius,
10 mm consolidation distance between peaks) and masked out
voxels that failed to pass multiple comparison and sphericity cor-
rections (see Materials and Methods). This procedure produced
73 ROIs (see Fig. 4, middle; Tables 1– 4), which were then used in
Exp2 to examine the evolution of TR-dependent BOLD activity
during nonjittered revelation.

Experiment 2
Predictions. Based on basic principles of linear systems, including
scaling (output magnitude is proportional with input magni-
tude) and superposition (total response to multiple inputs equals

the sum of the responses), we hypothesized that various cognitive
events could influence the shape of the evolving BOLD signal.
These events include sensory processing, evidence accumulation,
recognition decisions, verification decisions, and overt behavior.
Because stimuli were revealed gradually from under a black mask,
the amount of stimulus information increased at regular intervals
throughout the trial. Accordingly, in visual processing areas that
process basic stimulus features, the BOLD signal should begin to
increase early in the trial and continue to increase as the stimulus
is revealed. Thus, as shown in Figure 2a, the width of the time
course profile in sensory processing areas should correspond to
trial duration. In contrast, the neurophysiological findings (Kim
and Shadlen, 1999; Shadlen and Newsome, 2001) predict that
activity in accumulation regions will begin early in the trial and
continue to increase at a TR-dependent rate. For instance, recog-
nition at TR4 should be associated with a more rapid increase in
activity than recognition in TR7 (Fig. 2b). Based on the findings
reported in the literature, we may find accumulating patterns of
activity in parietal and frontal areas. Given the task demands, we
may also find task-specific ROIs that are important in visual ob-
ject processing. BOLD responses associated with processes en-
gaged at the moment of recognition should also vary according to
TR. Because the moment of recognition is a discrete event, re-
sponses should occur transiently at TR (Fig. 2c). A large body of
literature on decision making (Bush et al., 2002; Carlson et al.,
2006; Grinband et al., 2006; Hampton and O’Doherty, 2007;
Thielscher and Pessoa, 2007) implicates anterior cingulate and
frontal opercular regions in this type of processing. Accordingly,
we hypothesize that these regions will be recruited at the moment
of recognition. Although the time course profile predictions are
derived from theoretical accounts and empirical findings, we
note that BOLD responses need not necessarily show these spe-
cific time course patterns because some regions may show com-
binations of such responses (i.e., both accumulator and moment

Table 1. Peak locations and coordinates for ROIs belonging to the negative
waveform cluster

Anatomic location �BA x y z

(1) L paracentral lobule 6 �1 �32 58
(2) R middle frontal gyrus 6 24 �7 59
(3) R posterior cingulate 31 15 �43 40
(4) R superior temporal gyrus 41 38 �34 17
(5) R superior temporal gyrus 22 57 �8 7
(6) R superior temporal gyrus 42 54 �31 15
(7) R posterior insula 13 47 �18 15
(8) L superior temporal gyrus 41 �55 �20 8
(9) L posterior insula 13 �39 �21 12
(10) L superior temporal gyrus 42 �55 �33 11
(11) L superior temporal gyrus 41 �42 �36 11
(12) R precuneus 7 11 �46 51
(13) L middle temporal gyrus 39 �51 �62 27
(14) R superior parietal lobule 7 28 �47 61
(15) L posterior cingulate 31 �14 �39 39
(16) L precuneus 31 �9 �56 34
(17) R precuneus 7 8 �52 61
(18) L precuneus 7 �12 �47 51
(19) L precuneus 7 �8 �61 61
(20) L precuneus 7 �1 �46 56
(21) R anterior cingulate 32 4 46 �03
(22) R cingulate gyrus 31 7 �47 27
(23) L precuneus 7 �1 �59 53
(24) R precuneus (Fig. 4d) 7 2 �60 37

L, Left; R, right; �BA, approximate Brodmann’s area; x, y, z, atlas coordinate dimensions. ROI order follows cluster
tree displayed in Figure 3. Anatomic locations are approximate.

Table 2. Peak locations and coordinates for ROIs belonging to the late positive
waveform cluster

Anatomic location �BA x y z

(25) R cuneus 18 14 �82 28
(26) L cuneus (Fig. 4c) 18 �1 �83 25
(27) R parahippocampal gyrus 19 17 �52 �4
(28) L lingual gyrus 19 �16 �57 �2
(29) L lingual gyrus 18 �9 �68 2
(30) R cuneus 30 11 �69 10
(31) L cuneus 17 �5 �77 13

L, Left; R, right; �BA, approximate Brodmann’s area; x, y, z, atlas coordinate dimensions. ROI order follows cluster
tree displayed in Figure 3. Anatomic locations are approximate.

Table 3. Peak locations and coordinates for ROIs belonging to the bimodal
waveform cluster.

Anatomic location �BA x y z

(32) L anterior cingulate 32/24 �10 35 14
(33) L posterior parietal lobe 7 �28 �44 51
(34) L postcentral gyrus 43 �49 �11 16
(35) L cingulate gyrus 24 0 10 31
(36) L middle temporal gyrus 39 �42 �74 13
(37) L cingulate gyrus 24 �10 4 39
(38) L cingulate gyrus 32 �9 28 27
(39) R anterior cingulate 32 9 32 25
(40) R cerebellum NA 11 �71 �23
(41) L middle frontal gyrus 6 �25 �10 55

L, Left; R, right; �BA, approximate Brodmann’s area; x, y, z, atlas coordinate dimensions; NA, not applicable. ROI
order follows cluster tree displayed in Figure 3. Anatomic locations are approximate.
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of recognition patterns, which would preclude dissociation), or
show responses not otherwise considered a priori.

According to these expectations, the pattern of activity asso-
ciated with accumulation and the moment of recognition should
have some similarity. For example, because accumulation and
recognition are inherently associated with TR, the time to peak
activity for both should shift in time as a function of TR. However,
as illustrated in Figure 2, b and c, they should differ in two im-
portant ways. First, because of a hypothetical role in integrating
information over time, BOLD responses associated with accu-
mulation should increase as soon as information related to a
decision becomes available (e.g., earlier onset) (Fig. 2b). In con-
trast, the onset of activity associated with the moment of recog-
nition should shift later in time depending on TR (Fig. 2c). Sec-
ond, because evidence gathering is a prolonged process, time
courses associated with accumulation should be more extended
in time (i.e., greater width), albeit showing narrower widths than
regions related to visual processing. Combined, these two predic-
tions further predict that in accumulation (but not moment of
recognition) ROIs the slope of the leading edge of the BOLD
response will decrease as TR increases. It is important to empha-
size that, despite the preceding hypotheses describing event-
dependent time course shapes, we did not explicitly model the
shape of the hemodynamic response.

Hierarchical cluster analysis. From the 73 Exp1 ROIs, we ex-
tracted TR-dependent time courses from the Exp2 trials in which
recognition occurred during revelation steps 4 –7. We wanted to

characterize the similarities and differ-
ences in patterns of time courses across a
large set of ROIs, so we began sorting the
data using a hierarchical cluster analysis
(see Materials and Methods). Figure 3a
displays the relationships among the 73
ROIs using a cluster tree (dendrogram).
Regions with similar patterns of time
course are clustered more closely than re-
gions with different patterns. Pruning the
cluster tree at 1 � r � 0.8 produced four
clusters, each associated with a distinct
pattern of time course when averaged over
all ROIs in a cluster (Fig. 3b– e; Tables
1– 4). A large cluster of regions located in
medial parietal (precuneus) cortex, supe-
rior temporal gyrus, posterior insula, me-
dial frontal cortex, and lateral parietal
lobes exhibited negative time courses that
tended to peak in step with TR (Fig. 3b,
Table 1). A cluster of seven ROIs located in
bilateral posterior occipital cortex, lingual
gyrus, and left parahippocampal gyrus dis-
played an initial decrease in activity, fol-
lowed by a prominent increase near the
end of the time series (late positive) (Fig.
3c, Table 2). A third cluster included ROIs
near left middle frontal gyrus (�BA 6),
PPL, and middle temporal gyrus, and a
subset of the ROIs found in bilateral ACC
(�BA 32, 24). These regions displayed a
bimodal response, with an initial positive
response that corresponded with TR and a
secondary positive response near the end
of the time series (Fig. 3d, Table 3). The
fourth and largest cluster displayed posi-

tive responses that, as a group, suggested increased activity at a
rate corresponding with TR (Fig. 3e, Table 4). These ROIs were
located in bilateral dlPFC (�BA 47, 46), ACC (BA 32), IT (in-
cluding fusiform gyrus; BA 37, 20), PPL (BA 40, 7), cuneus/pos-
terior occipital (BA 18), striatum, thalamus and cerebellum, and
represent the target of our further analyses.

Figure 4 shows representative time courses from six ROIs: (1)
left ventral cuneus near BA 17 (Talairach atlas x � �19, y � �99,
z � 2), (2) left IT near BA 37 (�42, �63, �9), (3) middle occip-
ital gyrus near BA 18 (�1, �83, �25), (4) precuneus near BA 7
(2, �60, 37), (5) meFG/pre-SMA near BA 32 (�1, 14, 51), and
(6) right aI/fO (33, 22, �2). The plotted time series extend over
16 frames of image acquisition (32 s) and are shaded according to
TR. Even in individual ROIs, there were clear time course patterns
evident in the large positive cluster (Table 4). For example, early
visual processing areas displayed an early onset of BOLD signal
change, followed by a gradual increase in activity that extended to
the end of the trial (e.g., left ventral cuneus near BA 17) (Fig. 4a).
In these regions, activity corresponded mostly with the amount
of visual information on the screen. This type of response is con-
sistent with a “sensory processor” (Fig. 2a) that processes basic
sensory information but may not contribute directly to higher
order recognition analysis. In other regions with an early onset,
the peak in activity shifted with TR. This set included ROIs in
bilateral PPL, precuneus, middle occipital gyrus, left IT (Fig. 4b),
and bilateral dlPFC (Table 4). This pattern of accumulation is
consistent with the predicted behavior of an evidence accumula-

Table 4. Peak locations, coordinates, and interpolation group for ROIs belonging to the positive waveform
cluster

Anatomic location �BA x y z Interpolation group

(42) R precentral gyrus 44 51 15 07 Moment of recognition
(43) R inferior frontal gyrus 47 45 14 �03 Moment of recognition
(44) R inferior parietal lobule 40 49 �48 47 Moment of recognition
(45) R medial frontal gyrus 8 01 26 42 Moment of recognition
(46) L medial frontal gyrus (Fig. 4e) 6 �01 14 51 Moment of recognition
(47) R anterior cingulate 32 06 24 31 Moment of recognition
(48) L thalamus NA �11 �12 08 Moment of recognition
(49) R thalamus NA 11 �13 09 Moment of recognition
(50) L striatum NA �11 07 05 Moment of recognition
(51) R striatum NA 12 06 03 Moment of recognition
(52) L inferior frontal gyrus 47 �42 19 01 Moment of recognition
(53) R anterior insula (Fig. 4f) 13 33 22 �02 Moment of recognition
(54) L anterior insula 13 �32 22 01 Moment of recognition
(55) R inferior parietal lobule 7 34 �57 47 Moment of recognition
(56) L cerebellum NA �26 �79 �22 Accumulator
(57) L cerebellum NA �34 �72 �27 Accumulator
(58) L middle frontal gyrus 46 �44 28 24 Accumulator
(59) L fusiform gyrus 20 �31 �39 �14 Accumulator
(60) L inferior occipital gyrus 18 �32 �89 �09 Accumulator
(61) R fusiform gyrus 37 49 �61 �09 Accumulator
(62) R middle frontal gyrus 46 47 32 19 Accumulator
(63) L intraparietal sulcus 7/19 �26 �68 38 Accumulator
(64) L fusiform gyrus (Fig. 4b) 37 �42 �63 �09 Accumulator
(65) R inferior frontal gyrus 6/9 44 06 33 Accumulator
(66) R middle occipital gyrus 19 30 �78 17 Sensory processor
(67) L middle occipital gyrus 19 �30 �78 21 Accumulator
(68) R superior occipital gyrus 19/39 31 �71 29 Accumulator
(69) L posterior inferior frontal gyrus 9/6 �46 0 32 Accumulator
(70) R lingual gyrus 17 01 �93 �06 Sensory processor
(71) L cuneus (Fig. 4a) 18 �19 �99 02 Sensory processor
(72) L lingual gyrus 18 �10 �99 �05 Sensory processor
(73) R cuneus 18 �16 �99 �01 Sensory processor

L, Left; R, right; �BA, approximate Brodmann’s area; x, y, z, atlas coordinate dimensions. ROI order follows cluster tree displayed in Fig. 3. Anatomic locations
are approximate.
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tor (Fig. 2b) that integrates information
over time. In contrast, BOLD responses in
bilateral aI/fO (Fig. 4f), dorsal ACC,
meFG/pre-SMA (Fig. 4e), and thalamus
were markedly more transient, with onsets
and peaks that appeared to correlate posi-
tively with TR. Activity in these regions ap-
peared to be most directly related to pro-
cesses engaged at the time of recognition.
As noted earlier, the cluster analysis iden-
tified two patterns of negative response.
For example, ROIs near the lingual gyrus
and cuneus (�BA 19) (Fig. 4c) showed an
initial decrease in activity followed by a
marked increase near the end of the trial.
In other regions near the angular gyrus
and the precuneus (Fig. 4d), activity ap-
peared to decrease at a rate corresponding
with TR. Because of space considerations,
we will focus on the positive responses.

Linear interpolation of BOLD responses.
We next investigated time course patterns
from the positive-going cluster (Fig. 3e) by
quantifying onset, peak, and FWHM for
each of the 32 ROIs. Our predictions
across levels of TR for sensory processors,
accumulators, and moment of recognition
ROIs are displayed in Figure 2. To objec-
tively classify ROI behavior based on these
attributes, we entered the onset, peak, and
FWHM values into a second hierarchical
cluster analysis. Thus, in contrast to the
previous cluster analysis (Fig. 3), in which
we correlated the time courses between
ROIs, the goal of the second cluster analy-
sis was to correlate interpolation parame-
ters in the 32 positive ROIs. Interpolation
data for each ROI took the form of a 1 � 12
vector representing the four onset points (TR4 –7), four peaks
(TR4 –7), and four width values (TR4 –7). For reference, we also
included the idealized values for each predicted response type
displayed in Figure 2. The results of the second cluster analysis are
displayed in Figure 5, with idealized parameters labeled “accu-
mulator,” “sensory,” and “recognition.” The 32 ROIs clustered
into three distinct groups containing 14, 5, and 13 ROIs (not
including the three idealized value sets). Within each group,
some ROIs clustered quite closely with the idealized parameters.
For example, regions in medial occipital cortex (�BA 17/18)
clustered closely with the idealized sensory processing parame-
ters (Fig. 5a, red). Responses in occipital and fusiform ROIs clus-
tered quite closely with the idealized accumulator parameters
(Fig. 5a, blue). Regions in meFG (�BA 6), ACC (�BA 8, 32),
right inferior parietal cortex (�BA 40), right inferior frontal gy-
rus (�BA 47), and right inferior precentral gyrus (�BA 44) clus-
tered tightly with the idealized moment of recognition parame-
ters (Fig. 5a, green). A number of other ROIs, however, were
associated with parameter differences that led to greater cluster
distances. For example, ROIs in frontal and parietal cortex dis-
played response parameters similar to the idealized accumulator,
but tended to have larger FWHM values than our ideal predic-
tions. Despite these differences, the values in moment of recog-
nition ROIs were clearly distinct from the accumulator and sen-
sory processing ROIs. The parameter values for onset, peak, and

width are plotted in Figure 5b– d as a function of TR, averaged
over all ROIs in each of the three clusters.

Figures 6 – 8 (b–d) show the interpolation values for each ROI
in the three main interpolation clusters, as well as the average
values represented by a thicker black line for reference (which are
also shown in Fig. 5b– d). Onset times in sensory ROIs (Fig. 6b)
changed little across TR4 –7 (mean � 5.5, 5.2, 4.8, 5.2 s, respec-
tively, across ROIs within the cluster), whereas onset times in
accumulator ROIs (Fig. 7b) increased slightly (7.1, 7.0, 8.2, 8.6 s).
In recognition ROIs, onset times (Fig. 8b) increased markedly as
TR increased (8.5, 12.0, 13.3, 14.3 s). Peak times tended to in-
crease in all three region types (Figs. 6 – 8c), with steeper increases
in accumulator (14.8, 16.5, 18.3, 20.0 s) and recognition (14.2,
16.3, 18.3, 20.2 s) ROIs than sensory (15.6, 17.6, 17.6, 18.8 s)
ROIs. Sensory ROIs were associated with the widest response
profiles across levels of TR (Fig. 6d) (15.7, 15.2, 14.6, 15.3 s),
followed by accumulator (Fig. 7d) (11.3, 11.0, 10.2, 9.2 s) and
recognition (Fig. 8d) (7.1, 4.8, 5.7, 5.4 s) ROIs. All in all, the
regions that make up each category deviated little from the aver-
age line.

To test our hypotheses about differences in onset times, peak
times, and response width between the three main clusters, we
entered the corresponding values for each ROI into three sets of
repeated-measures ANOVAs (using SPSS; SPSS, Chicago, IL)
with four levels of the repeated-measure TR (4, 5, 6, 7). In the first

Figure 3. Cluster tree and averaged TR-dependent time courses. a, The cluster tree displays the similarity of time courses across
ROIs in terms of a distance unit (1 � r). ROIs are listed along the y-axis and labeled according to atlas coordinate (cross-reference
with Tables 1– 4). ROIs linked across greater distances on the x-axis exhibited more disparate time courses. As 1 � r values
approach 0, time course similarity increases. As 1 � r increases above �1.00, time courses become negatively correlated. The
vertical dashed line shows where pruning the tree at 1 � r � 0.80 separated the tree into four major clusters. The cophenetic
correlation coefficient was 0.8234, suggesting very little distortion in the data to construct the tree. b– e, Time courses for TR4 –7
are averaged across all ROIs in each major subcluster. The time courses are color-coded by cluster membership and are graphed in
units of percentage signal change from baseline (0%; horizontal dashed line).
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analysis in the set, we tested for differences in onset, peak, and
width across region grouping by including three levels of the
between factor region type (sensory, accumulator, recognition).
In the second analysis of the set, when warranted by significant
effects in the first, we directly contrasted region groups by includ-
ing only two levels of the between factor region type and testing
each unique combination (sensory, accumulator; sensory, recog-
nition; and accumulator, recognition) in three separate ANO-
VAs. The second set of analyses investigated the source of signif-
icant effects in the first analysis by making pairwise comparisons
of repeated-measures models. In the third set, we tested the de-
gree to which onset and peak values followed a linear trend across
TR by computing three 1 � 4 repeated-measures ANOVAs and
including a polynomial trend analysis. In these analyses, the main
effect of TR determines the reliability by which interpolated val-
ues differ across levels of TR, whereas the trend analysis deter-
mines whether that change is linear. All F and p values of repeated
measures incorporate the Greenhouse-Geisser sphericity correc-
tion to adjust the degrees of freedom.

Onset times
The 3 � 4 ANOVA of onset times with the three region groups
revealed a significant main effect of TR (F(2.5,73.4) � 14.47, p �
0.0001) and a significant interaction of TR with region type
(F(5.1,73.4) � 10.91, p � 0.0001), indicating that across regions the
onset times differed over levels of TR, and this effect was modified
by region type. The main effect of the between-factor region type
was also significant (F(2,29) � 31.91, p � 0.0001). To identify the
source of the interaction, we next computed three 2 � 4 ANOVAs
on each unique combination of the three ROI types. All three
ANOVAs revealed an interaction of region type with TR (all p �
0.05), indicating that the observed rates of increasing onset values
across TR4 –7 (recognition � accumulator � sensory) differed
significantly between the three region types.

Next, we computed a separate 1 � 4 repeated-measures
ANOVA on each region type to determine whether the change in
onset times followed a linear trend across levels of TR. According
to these analyses, onset values at different TRs did not differ in
sensory ROIs (F(1.3,5.4) � 1.67, p � 0.26) and did not reliably
follow a linear trend across TR4 –7 (F(1,4) � 1.04, p � 0.37). In
contrast, onset values differed significantly across levels of TR in
accumulator (F(2.3,28.1) � 5.93, p � 0.01) and recognition
(F(2.0,26.1) � 33.51, p � 0.0001) ROIs. Both of the latter region
types also showed significant linear trends (accumulator: F(1,12)

� 13.39, p � 0.0001; recognition: F(1,13) � 75.37, p � 0.0001),
indicating that the onset values increased significantly and lin-
early as TR increased.

Combined, the three sets of analyses indicate that onset times
increased linearly in accumulator and recognition, but not sen-
sory, ROIs. Furthermore, in accumulator and recognition ROI
types, the increase in onset times across levels of TR differed reli-
ably. Thus, the increasing onset values observed in recognition
ROIs was greater than the accumulation ROI values.

Peak times
To determine whether peak values changed reliably as a function
of TR, we next performed the same set of analyses on interpolated
peak times. The 3 � 4 ANOVA with three levels of region type
revealed a significant main effect of TR (F(2.8,81.0) � 225.62, p �
0.0001) and an interaction of TR with region type (F(5.6,81.0) �
8.06, p � 0.0001), indicating that peak times increased signifi-
cantly as a function of TR and that this effect was modified by
region type. To explore the source of these differences we next
computed three 2 � 4 ANOVAs, each with two levels of region
type. In these analyses, interactions of TR with region type indi-
cated that the change in peak values over TR4 –7 in sensory ROIs
differed from accumulator (F(2.6,41.1) � 9.64, p � 0.0001) and
recognition (F(2.2,38.0) � 17.59, p � 0.0001) ROIs. However, there
was no difference in peak values over TR4 –7 between accumula-
tor and recognition ROIs (F(2.7,67.6) � 1.46, p � 0.23). Thus,
increases in time to peak values were greater in accumulator and
recognition ROIs than in sensory ROIs. In all three ROI types, the
main effect of TR in the 1 � 4 ANOVAs was significant (all p �
0.01), and all showed a significant linear trend (all p � 0.01). Peak
times increased as a function of TR in all three region types. The
2 � 4 analyses indicated that the rate of increase in the sensory
ROI group was significantly less than in accumulator and recog-
nition ROI groups.

BOLD response width
To test the hypothesis that response widths would be greatest in
sensory ROIs, least in recognition ROIs, and intermediate in ac-
cumulator ROIs, we first entered the FWHM values into a 3 � 4
ANOVA (describe above). A significant main effect of TR

Figure 4. Select regions of interest and their time course data. Regions of interest from Exp1
are shown near center, color-coded by Exp2 cluster membership at 1� r �0.8 (Fig. 3). ROIs are
displayed in horizontal slices over the top of the anatomical template used in stereotaxic atlas
transformation. Difference in millimeters from anterior commissure–posterior commissure is
noted below each slice. In a–f, time courses for TR4 –7 are graphed, in units of percentage
signal change from baseline (0%), as a function of time. Time courses are color-coded according
to the legend. TR1 began at 0 s. The onsets of steps 4 –7 are denoted by different bar colors on
the x-axis, as denoted by the legend. Step 8 (VoA), which began at 14 s, is denoted by a black bar
on the x-axis. The marker for VoA is for reference only. a, Left ventral cuneus (peak voxel
coordinate, �19, �99, �2); b, left IT (�42, �63, �9), c, left cuneus (�1, �83, �25); d,
right precuneus (�2, �60, �37); e, meFG/pre-SMA (�1, �14, �51); f, right aI/fO (�33,
�22, �2).

Ploran et al. • Evidence Accumulation and Moment of Recognition J. Neurosci., October 31, 2007 • 27(44):11912–11924 • 11919



(F(2.0,58.4) � 4.50, p � 0.05) and a nonsig-
nificant interaction of TR with region type
(F(4.0,58.4) � 1.96, p � 0.11) indicated that
width values differed across levels of TR

but not as a function of region type. How-
ever, a significant main effect of the
between-factor region type (F(2,29) �
90.48, p � 0.0001) revealed a highly reli-
able difference in widths between regions.
Because the interaction was not signifi-
cant, we did not perform the 2 � 4 region-
wise analyses that were conducted on the
onset and peak data. Finally, the 1 � 4
ANOVAs revealed no significant main ef-
fect of TR in the sensory ROI group
(F(1.1,4.3) � 0.32, p � 0.62), and a signifi-
cant main effect in the accumulator
(F(1.6,19.0) � 7.00, p � 0.01) and recogni-
tion (F(1.5,19.0) � 4.86, p � 0.05) ROI
groups. Only the accumulator group
showed significant linear trends in width
values across levels of TR (F(1,12) � 11.41,
p � 0.01). The principle result from this
analysis was that response widths, which
were greatest for sensory ROIs, least for
recognition ROIs, and intermediate for ac-
cumulator ROIs, differed significantly
across region type.

Slope analysis
We used the onset and peak times to also
determine whether the slopes of the lead-
ing edge of BOLD response changed as a
function of TR. Leading edge slopes were computed as follows:
(SCP � SCON)/(TP � TON), where SC � percentage signal
change, T � time (sec), P � peak, and ON � onset. Specifically,
we hypothesized that in accumulators the slope of the leading
edge would decrease as decision time increased. To test this hy-
pothesis, we entered slope values from accumulator ROIs (TR4 –7
means: 0.13, 0.11, 0.10, 0.10) into a single factor repeated-
measures (TR4 –7) ANOVA and included a linear trend analysis
to determine whether slope values changed linearly across levels
of TR. This analysis revealed a main effect of TR (F(2.1,25.7) � 6.15,
p � 0.01) and a significant linear trend (F(1,12) � 8.91, p � 0.05).
The same analysis on data from recognition ROIs (TR4 –7 means:
0.10, 0.13, 0.10, 0.13) revealed neither a main effect of TR

(F(1.9,24.6) � 1.28, p � 0.29) nor a significant linear trend (F(1,13)

� 0.57, p � 0.46).

Atypical responses
Although the ROIs clustered into three distinct categories that
were broadly consistent with our predicted profiles, some ROIs
did not cluster as tightly with the idealized response as others. For
example, in two “accumulator” ROIs located in left cerebellum
(supplemental Fig. 1a, top, available at www.jneurosci.org as
supplemental material), activity increased rapidly and indepen-
dently of TR, but then displayed a more gradual increase that was
TR dependent (supplemental Fig. 1b, available at www.jneuro-
sci.org as supplemental material). In ROIs located near the right
supramarginal gyrus (�34, �57, �47), right posterior parietal
lobe (�49, �48, �47), right inferior precentral gyrus near fron-
tal operculum (�51, �15, �07), and right posterior inferior
frontal gyrus (�45, �14, �03) (supplemental Fig. 1a, bottom
panel, available at www.jneurosci.org as supplemental material),

activity increases occurred relatively late in the trial (supplemen-
tal Fig. 1c, available at www.jneurosci.org as supplemental mate-
rial). The late response suggests that these regions may be more
involved in processing occurring at VoA than at TR. In addition,
ROIs in or near bilateral striatum (�11, �07, �05; �12, �06,
�03), near the head of the caudate nucleus, clustered broadly
into the recognition group. However, their time course parame-
ters were least similar to other ROIs in the group (supplemental
Fig. 2, available at www.jneurosci.org as supplemental material).

Motor analysis
To determine the shape of the BOLD response associated with mo-
tor events, we extracted time courses from two sensorimotor regions
encompassing precentral and postcentral gyri. Results are shown in
supplemental Figure 3, available at www.jneurosci.org as supple-
mental material. The time courses associated with TR4–5 were bi-
modal, indicative of separate motor responses occurring at recogni-
tion and again at VoA. The time course profiles for TR6–7 were
wider, most likely reflecting the fact that perceptual recognition de-
cisions and VoA occurred closely enough in time that the BOLD
responses were summated. In motor areas, TR4–5 time courses dis-
played a clear bimodal pattern in which the initial peak was associ-
ated with TR and the second peak with VoA. This pattern of activity
differed substantially from the patterns observed in the positive
waveform cluster. We conclude from these data that the procedure
used to identify ROIs by comparing TR with VoA factored out motor
processing to a reasonable degree.

Discussion
The decision process involves analysis of sensory input, gathering
of evidence toward behavioral options, and a later process that

Figure 5. Hierarchical cluster analysis of interpolation data. Each of the 32 ROIs from the positive waveform cluster was
subjected to interpolation analysis that defined each region’s onset point, peak, and width. a, Cluster tree representing the three
categories of regions based on the predicted outcomes from Figure 2. Red, Sensory processors; blue, accumulators; green, recog-
nition regions. The cluster was cut at a 1 � r value of 0.2 to allow for each region to belong to a distinct cluster. The ideal values
from Figure 2 were also placed into the correlation matrix to determine which of the 32 regions clustered near to or far from these
hypothesized categories. b– d, Mean interpolation values for each of the three sets of regions identified in the cluster analysis
separated by onset point, peak, and width. Error bars represent SEM. Note that the slope of increasing peak times (c) in sensory
ROIs differed significantly from accumulation and recognition ROIs.
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allows the selection of a contextually relevant behavior and the
evaluation of its appropriateness. We present data indicating that
neural mechanisms supporting perceptual recognition decisions
can be dissociated using fMRI. These include (1) sensory proces-
sors in which activity reflects the quantity of stimulus informa-
tion entering the system, (2) accumulators that may reflect the
gathering of information used in making the decision, and (3) a
set of processors that are clearly engaged at, but not before, the
time of recognition. Overall, the results help define a hierarchy of
neural mechanisms involved in sorting inputs, gathering evidence,
and deciding and monitoring an appropriate course of action. In

addition, they demonstrate that accumulation processes can be
identified using fMRI as dynamically evolving signals.

Sensory processing
During stimulus revelation, activity in posterior occipital regions
initially increased monotonically as a function of the amount of
visual information entering the system. Activity in some sensory
processors also appeared to vary modestly with TR, as evidenced by
peak latencies that shifted positively with TR (Figs. 4a, 5c). It appears
that TR may have been influenced somewhat by bottom-up
stimulus-specific differences in the amount or type of stimulus in-

Figure 6. Interpolation analysis, sensory processors. a, Time courses for five sensory ROIs identified by the interpolation analysis. Time courses are shaded by TR (Fig. 4, caption). b– d, The data
for each sensory region is shown in red, and the mean of those values is indicated by a thick black line for onset, peak, and width. e, The ROIs are shown projected onto inflated cortical surfaces of
left and right hemispheres. L, Left; R, right; Post., posterior.

Figure 7. Interpolation analysis, accumulators. a, Time courses for 13 accumulator ROIs identified by the interpolation analysis. Time courses are shaded by TR (Fig. 4, caption). b– d, The data for
each accumulator region are shown in blue, and the mean of those values is indicated by a thick black line for onset, peak, and width. e, ROIs are projected onto inflated cortical surfaces.
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formation available throughout the revelation process. That is, some
objects may have been identified earlier in the trial because more
critically identifiable features were unmasked earlier. For example,
certain visible elements (e.g., geons) provide a higher degree of ob-
ject level information than straight lines (Biederman, 1987). If true,
then TR-dependent activity in late visual processing areas could have
depended on differences in lower-level feature extraction in early
visual areas. The Exp2 behavioral data support this alternative,
because recognition times for some items tended to be consis-
tent across subjects (see supplemental text, available at www.
jneurosci.org as supplemental material).

Accumulation
Regions demonstrating accumulation may compute decision
variables, such that the quantity of accrued activity is associated
with decision outcome. We found accumulator patterns of re-
sponse in ROIs in bilateral occipital lobes, fusiform gyrus near
lateral occipital complex (Kourtzi and Kanwisher, 2001), dlPFC,
and PPL (Fig. 7). The pattern of TR-dependent accumulation of
BOLD activity observed in these regions is consistent with the
buildup of neural activity found in studies of nonhuman pri-
mates making perceptual decisions (Hanes and Schall, 1996; Kim
and Shadlen, 1999; Platt and Glimcher, 1999; Shadlen and New-
some, 2001; Ratcliff et al., 2003). Interestingly, in an fMRI study
with human participants, Kleinschmidt et al. (2002) used a per-
ceptual task capable of inducing hysteresis and found right later-
alized frontal and parietal, and bilateral occipital/temporal areas
in which activity increases were related to a perceptual pop-out
effect of letter stimuli. The data are also reminiscent of a diffusion
process. For example, in Ratcliff’s two-choice diffusion model
(Ratcliff, 1978; Ratcliff et al., 2004), evidence is accumulated in a
drift parameter and decisions are generated when the value of the
drift parameter surpasses a response boundary. The level of ac-

tivity in the accumulator regions may thus reflect neuronal pro-
cessing relevant to the recognition decision. For instance, when
recognition occurred early in the trial, the leading edge of activity
followed a steep slope. As recognition time increased, however,
the slope became shallower, suggesting a longer diffusion pro-
cess. Ultimately, perceptual recognition may occur when activity
in one or more accumulators surpasses a response threshold.
Because we could not perform trial-level analyses, the findings
are too broad to test the veracity of different accumulator models.
We note the relationship, instead, to build a conceptual link be-
tween the current findings and theoretical accounts of decision
making.

It seems plausible that component processes related to analy-
sis of visual features and semantic knowledge could contribute to
a pattern of accumulation. Thus, the degree to which the TR-
dependent buildup in activity reflects “evidence accumulation”
per se is not clear from the data. For example, rather than sup-
porting the presence of an integrative mechanism, it is possible
that accumulating activity is a mere byproduct of information pro-
cessing. Accordingly, the level of activity could be a consequence of
the timing by which neurons are recruited during the task. In our
view, however, the tight coupling of the rate of activity buildup and
TR in our data and in single-unit studies in nonhuman primates
(Kim and Shadlen, 1999; Shadlen and Newsome, 2001) suggests that
a purely epiphenomenal account is unlikely. However, further ex-
periments are needed to test the content and task specificity of accu-
mulation to the decision-making process.

It is worth noting that some parietal regions displaying accumu-
lation responses are near parietal “retrieval success” regions identi-
fied in episodic memory studies using old/new recognition and
source memory tasks (Habib and Lepage, 1999; Konishi et al., 2000;
McDermott et al., 2000; Donaldson et al., 2001a,b; Wheeler and
Buckner, 2003, 2004). For example, a region near the intraparietal

Figure 8. Interpolation analysis, moment of recognition areas. a, Time courses for 14 recognition ROIs identified by the interpolation analysis. Time courses are shaded by TR (Fig. 4, caption). b– d,
The data for each recognition region are shown in green, and the mean of those values is indicated by a thick black line for onset, peak, and width. e, ROIs are projected onto inflated cortical surfaces.
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sulcus (IPS) (e.g., �26, �68, 38) demonstrated an accumulator pat-
tern of response. Several studies of recognition memory have re-
ported that IPS and precuneus are most active when participants
respond “old” and least active when they respond “new,” indepen-
dently of accuracy (Wheeler and Buckner, 2003; Kahn et al., 2004).
The association between the decision outcome and level of BOLD
signal suggests that the memory decision may have been based on a
simple threshold mechanism. This finding has raised the possibility
that in memory tasks the function of such regions is to accumulate
and maintain relevant mnemonic information over time. The cur-
rent data show that activity in IPS gradually accumulates until the
moment of object identification, and thus suggest a more domain-
general integrative mechanism supporting episodic recognition and
perceptual identification.

Recognition decision
Activity in a large number of regions, including bilateral thala-
mus, meFG/pre-SMA, dorsal ACC, and aI/fO, was tightly cou-
pled to the time of recognition (Fig. 8). The precise role of meFG/
pre-SMA is unclear, although its function does not appear to be
directly related to action planning or execution (Picard and
Strick, 2001). The absence of a clear response at VoA supports
this view, because the motor demand at VoA did not produce a
marked change in signal in meFG/pre-SMA. In contrast, in mo-
tor ROIs we observed a transient change in BOLD signal at both
recognition and VoA (supplemental Figure 3, available at www.
jneurosci.org as supplemental material). The ACC, and more
recently the aI/fO, have both been associated with aspects of de-
cision making, including choice (Hampton and O’Doherty,
2007; Thielscher and Pessoa, 2007), error detection (Dehaene et
al., 1994), error likelihood (Brown and Braver, 2005), reward
evaluation (Rogers et al., 1999; Sanfey et al., 2003), attention for
action (Posner et al., 1988; Posner and Petersen, 1990; Bush et al.,
1998), response conflict/competition (Bush et al., 1998; Botvin-
ick et al., 1999; Botvinick et al., 2001), confidence (Fleck et al.,
2006), and uncertainty (Grinband et al., 2006). The current re-
sults do not directly differentiate among these possibilities but do
temporally dissociate processes occurring at the moment of rec-
ognition and the subsequent verification of that recognition.

The current work extends previous research findings by dem-
onstrating that regions in pre-SMA, ACC, aI/fO, and thalamus
show strong activity to cognitive events that arise at, but not
before, the moment of recognition. However, they do not appear
to be explicitly linked to the decision process. Aside from the
recognition decision, a verification decision was made at the VoA
response. If these ROIs were obligatorily involved in decision
making, then they should display a bimodal time course, the first
peak time-locked with TR and the second associated with VoA
(Fig. 3d, supplemental Fig. 3, available at www.jneurosci.org as
supplemental material). Instead, it appears that activity in areas
recruited at the moment of recognition reflects contingencies
regarding their recruitment; these regions were clearly more in-
volved at the time of recognition than at the time of verification.
Further, it has been hypothesized that several of these regions
play a role in error detection (Dehaene et al., 1994). Error trials
(not presented) were associated with significantly greater TR-
dependent activity than correct trials in the moment of recogni-
tion ROIs. However, a pure error detection hypothesis is not
supported by the current data because TR-dependent BOLD re-
sponses were clearly evident on correct trials. Instead, errors ap-
pear to modulate other processing occurring in these areas.

Summary
The overall pattern of data suggests a hierarchical framework of neu-
ral mechanisms that is recruited during decision making. In this
framework, information processing proceeds through sensory pro-
cessing and evidence accumulation to decision mechanisms, and
culminates in a behavior. Presumably, this process begins with the
task-level assignment of setting decision criteria and includes post-
decision monitoring. Despite the finding presented here, the precise
functional relationship between accumulators and moment-of-
recognition areas is unknown. For example, it is unclear whether
decisions arise from information processed in accumulators or in
regions active at the moment of recognition (or elsewhere). Future
research on task specificity may be informative in determining
whether and how accumulating information is interpreted by deci-
sion mechanisms, whether they are task-specific or task-general, and
how decisions are reached and enacted.

References
Audley RJ, Pike AR (1965) Some stochastic models of choice. Br J Math Stat

Psychol 18:183–192.
Biederman I (1987) Recognition-by-components: a theory of human image

understanding. Psychol Rev 94:115–147.
Botvinick M, Nystrom LE, Fissell K, Carter CS, Cohen JD (1999) Conflict

monitoring versus selection-for-action in anterior cingulate cortex. Na-
ture 402:179 –181.

Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD (2001) Conflict
monitoring and cognitive control. Psychol Rev 108:624 – 652.

Boynton GM, Engel SA, Glover GH, Heeger DJ (1996) Linear systems anal-
ysis of functional magnetic resonance imaging in human V1. J Neurosci
16:4207– 4221.

Brown JW, Braver TS (2005) Learned predictions of error likelihood in the
anterior cingulate cortex. Science 307:1118 –1121.

Bundesen C (1990) A theory of visual attention. Psychol Rev 97:523–547.
Busemeyer J (1985) Decision making under uncertainty: a comparison of

simple scalability, fixed-sample, and sequential-sampling models. J Exp
Psychol Learn Mem Cogn 11:538 –564.

Bush G, Whalen PJ, Rosen BR, Jenike MA, McInerney SC, Rauch SL (1998)
The counting stroop: an interference task specialized for functional neu-
roimaging: validation study with functional MRI. Hum Brain Mapp
6:270 –282.

Bush G, Vogt BA, Holmes J, Dale AM, Greve D, Jenike MA, Rosen BR (2002)
Dorsal anterior cingulate cortex: a role in reward-based decision making.
Proc Natl Acad Sci USA 99:523–528.

Carlson T, Grol MJ, Verstraten FA (2006) Dynamics of visual recognition
revealed by fMRI. NeuroImage 32:892–905.

Cohen JD, MacWhinney B, Flatt M, Provost J (1993) PsyScope: a new
graphic interactive environment for designing psychology experiments.
Behav Res Meth Instrum Comput 25:257–271.

Cook EP, Maunsell JH (2002) Dynamics of neuronal responses in macaque
MT and VIP during motion detection. Nat Neurosci 5:985–994.

Cordes D, Haughton V, Carew JD, Arfanakis K, Maravilla K (2002) Hierar-
chical clustering to measure connectivity in fMRI resting-state data. Magn
Reson Imaging 20:305–317.

Dehaene S, Posner M, Tucker D (1994) Localization of a neural system for
error detection and compensation. Psychol Sci 5:303–305.

Donaldson DI, Petersen SE, Buckner RL (2001a) Dissociating memory re-
trieval processes using fMRI: evidence that priming does not support
recognition memory. Neuron 31:1047–1059.

Donaldson DI, Petersen SE, Ollinger JM, Buckner RL (2001b) Dissociating
state and item components of recognition memory using fMRI. Neuro-
Image 13:129 –142.

Dosenbach N, Fair D, Miezin F, Cohen A, Wenger K, Dosenbach R, Fox M,
Snyder A, Vincent J, Raichle M, Schlaggar B, Petersen S (2007) Distinct
brain networks for adaptive and stable task control in humans. Proc Natl
Acad Sci USA 104:11073–11078.

Eisen M, Spellman P, Brown P, Botstein D (1998) Cluster analysis and dis-
play of genome-wide expression patterns. Proc Natl Acad Sci USA
95:14863–14868.

Fleck MS, Daselaar SM, Dobbins IG, Cabeza R (2006) Role of prefrontal and

Ploran et al. • Evidence Accumulation and Moment of Recognition J. Neurosci., October 31, 2007 • 27(44):11912–11924 • 11923



anterior cingulate regions in decision-making processes shared by mem-
ory and nonmemory tasks. Cereb Cortex 16:1623–1630.

Fox MD, Snyder AZ, Barch DM, Gusnard DA, Raichle ME (2005) Transient
BOLD responses at block transitions. NeuroImage 28:956 –966.

Friston K, Jezzard P, Turner R (1994) Analysis of functional MRI time-
series. Hum Brain Mapp 1:153–171.

Gold J, Shadlen M (2007) The neural basis of decision making. Annu Rev
Neurosci 30:535–574.

Grinband J, Hirsch J, Ferrera V (2006) A neural representation of categori-
zation uncertainty in the human brain. Neuron 49:757–763.

Habib R, Lepage M (1999) Novelty assessment in the brain. In: Memory,
consciousness, and the brain (Tulving E, ed), pp 265–277. Philadelphia:
Psychology.

Hampton AN, O’Doherty JP (2007) Decoding the neural substrates of
reward-related decision making with functional MRI. Proc Natl Acad Sci
USA 104:1377–1382.

Handl J, Knowles J, Kell D (2005) Computational cluster validation in post-
genomic data analysis. Bioinformatics 21:3201–3212.

Hanes DP, Schall JD (1996) Neural control of voluntary movement initia-
tion. Science 274:427– 430.

Hanks TD, Ditterich J, Shadlen MN (2006) Microstimulation of macaque
area LIP affects decision-making in a motion discrimination task. Nat
Neurosci 9:682– 689.

Heekeren HR, Marrett S, Bandettini PA, Ungerleider LG (2004) A general
mechanism for perceptual decision-making in the human brain. Nature
431:859 – 862.

James T, Humphrey G, Gati J, Menon R, Goodale M (2000) The effects of
visual object priming on brain activation before and after recognition.
Curr Biol 10:1017–1024.

Kahn I, Davachi L, Wagner AD (2004) Functional-neuroanatomic corre-
lates of recollection: implications for models of recognition memory.
J Neurosci 24:4172– 4180.

Kim J-N, Shadlen MN (1999) Neural correlates of a decision in the dorso-
lateral prefrontal cortex of the macaque. Nat Neurosci 2:176 –185.

Kleinschmidt A, Buchel C, Hutton C, Friston KJ, Frackowiak RS (2002) The
neural structures expressing perceptual hysteresis in visual letter recogni-
tion. Neuron 34:659 – 666.

Konishi S, Wheeler ME, Donaldson DI, Buckner RL (2000) Neural corre-
lates of episodic retrieval success. NeuroImage 12:276 –286.

Kourtzi Z, Kanwisher N (2001) Representation of perceived object shape by
the human lateral occipital complex. Science 293:1506 –1509.

Lancaster JL, Glass TG, Lankipalli BR, Downs H, Mayberg H, Fox PT (1995)
A modality-independent approach to spatial normalization of tomo-
graphic images of the human brain. Hum Brain Mapp 3:209 –223.

Link S, Heath R (1975) A sequential theory of psychological discrimina-
tions. Psychometrika 40:77–105.

Logan GD, Gordon RD (2001) Executive control of visual attention in dual-
task situations. Psychol Rev 108:393– 434.

McDermott KB, Jones TC, Petersen SE, Lageman SK, Roediger III HL (2000)
Retrieval success is accompanied by enhanced activation in anterior pre-
frontal cortex during recognition memory: an event-related fMRI study. J
Cogn Neurosci 12:965–976.

Michelon P, Snyder AZ, Buckner RL, McAvoy M, Zacks JM (2003) Neural
correlates of incongruous visual information. An event-related fMRI
study. NeuroImage 19:1612–1626.

Miezin F, Maccotta L, Ollinger J, Petersen S, Buckner R (2000) Character-
izing the hemodynamic response: effects of presentation rate, sampling
procedure, and the possibility of ordering brain activity based on relative
timing. NeuroImage 11:735–759.

Nosofsky R, Palmeri T (1997) An exemplar-based random walk model of
speeded classification. Psychol Rev 104:266 –300.

Ojemann JG, Akbudak E, Snyder AZ, McKinstry RC, Raichle ME, Conturo
TE (1997) Anatomic localization and quantitative analysis of gradient
refocused echo-planar fMRI susceptibility artifacts. NeuroImage
6:156 –167.

Ollinger JM, Shulman GL, Corbetta M (2001) Separating processes within a

trial in event-related functional MRI I. The method. NeuroImage
13:210 –217.

Picard N, Strick P (2001) Imaging the premotor areas. Curr Opin Neurobiol
11:663– 672.

Platt ML, Glimcher PW (1999) Neural correlates of decision variables in
parietal cortex. Nature 400:233–238.

Posner MI, Petersen SE (1990) The attention system of the human brain.
Annu Rev Neurosci 13:25– 42.

Posner MI, Petersen SE, Fox PT, Raichle ME (1988) Localization of cogni-
tive operations in the human brain. Science 240:1627–1631.

Ratcliff R (1978) A theory of memory retrieval. Psychol Rev 85:59 –108.
Ratcliff R, McKoon G (1982) Speed and accuracy in the processing of false

statements about semantic information. J Exp Psychol Learn Mem Cogn
8:16 –36.

Ratcliff R, Rouder JN (1998) Modeling response times for two-choice deci-
sions. Psychol Sci 9:347–356.

Ratcliff R, Cherian A, Segraves M (2003) A comparison of macaque behav-
ior and superior colliculus neuronal activity to predictions from models
of two-choice decisions. J Neurophysiol 90:1392–1407.

Ratcliff R, Gomez P, McKoon G (2004) A diffusion model account of the
lexical decision task. Psychol Rev 111:159 –182.

Rogers RD, Owen AM, Middleton HC, Williams EJ, Pickard JD, Sahakian BJ,
Robbins TW (1999) Choosing between small, likely rewards and large,
unlikely rewards activates inferior and orbital prefrontal cortex. J Neuro-
sci 19:9029 –9038.

Roitman JD, Shadlen MN (2002) Response of neurons in the lateral intrapa-
rietal area during a combined visual discrimination reaction time task.
J Neurosci 22:9475–9489.

Rossion B, Pourtois G (2004) Revisiting Snodgrass and Vanderwart’s object
pictorial set: the role of surface detail in basic-level object recognition.
Perception 33:217–236.

Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E
(2005) Neurophysiological architecture of functional magnetic reso-
nance images of human brain. Cereb Cortex 15:1332–1342.

Sanfey AG, Rilling JK, Aronson JA, Nystrom LE, Cohen JD (2003) The neu-
ral basis of economic decision-making in the Ultimatum Game. Science
300:1755–1758.

Schlaggar BL, Brown TT, Lugar HM, Visscher KM, Miezin FM, Petersen SE
(2002) Functional neuroanatomical differences between adults and
school-age children in the processing of single words. Science
296:1476 –1479.

Shadlen MN, Newsome WT (2001) Neural basis of a perceptual decision in
the parietal cortex (area LIP) of the rhesus monkey. J Neurophysiol
86:1916 –1936.

Smith PL, Vickers D (1988) The accumulator model of two-choice discrim-
ination. J Math Psychol 32:135–168.

Snyder AZ (1996) Difference image versus ratio image error function forms
in PET-PET realignment. In: Quantification of brain function using PET
(Bailey D, Jones T, eds). San Diego: Academic.

Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human
brain. New York: Thieme.

Thielscher A, Pessoa L (2007) Neural correlates of perceptual choice and
decision making during fear-disgust discrimination. J Neurosci
27:2908 –2917.

Usher M, McClelland JL (2001) The time course of perceptual choice: the
leaky, competing accumulator model. Psychol Rev 108:550 –592.

Wheeler M, Shulman G, Buckner R, Miezin F, Velanova K, Petersen S (2006)
Evidence for separate perceptual reactivation and search processing dur-
ing remembering. Cereb Cortex 16:949 –959.

Wheeler ME, Buckner RL (2003) Functional dissociation among compo-
nents of remembering: control, perceived oldness, and content. J Neuro-
sci 23:3869 –3880.

Wheeler ME, Buckner RL (2004) Functional-anatomic correlates of re-
membering and knowing. NeuroImage 21:1337–1349.

Winer B, Brown D, Michels K (1991) Statistical principles in experimental
design, Ed 3. New York: McGraw-Hill.

11924 • J. Neurosci., October 31, 2007 • 27(44):11912–11924 Ploran et al. • Evidence Accumulation and Moment of Recognition


