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SUMMARY

The parietal lobe has long been viewed as a collection
of architectonic and functional subdivisions. Though
much parietal research has focused on mechanisms
of visuospatial attention and control-related pro-
cesses, more recent functional neuroimaging studies
of memory retrieval have reported greater activity in
left lateral parietal cortex (LLPC) when items are
correctly identified as previously studied (‘‘old’’)
versus unstudied (‘‘new’’). These studies have sug-
gested functional divisions within LLPC that may
provide distinct contributions toward recognition
memory judgments. Here, we define regions within
LLPC by developing a parcellation scheme that
integrates data from resting-state functional con-
nectivity MRI and functional MRI. This combined
approach results in a 6-fold parcellation of LLPC
based on the presence (or absence) of memory-
retrieval-related activity, dissociations in the profile
of task-evoked time courses, and membership in
large-scale brain networks. This parcellation should
serve as a roadmap for future investigations aimed
at understanding LLPC function.

INTRODUCTION

In humans, parietal cortex has traditionally been linked to pro-

cessing mechanisms involving attention (Corbetta et al., 1998;

Corbetta and Shulman, 2002; Dosenbach et al., 2006, 2007;

Rushworth et al., 2001; Yantis et al., 2002). Other accounts of

parietal cortex function, particularly focused on the left hemi-

sphere, have examined its role in reading (Turkeltaub et al.,
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2002), as well as numerosity judgments and arithmetic (Göbel

and Rushworth, 2004; Hubbard et al., 2005). More recently, there

has been a surge in research devoted to understanding the

contributions of left lateral parietal cortex (LLPC) to memory

retrieval (for review, see Wagner et al., 2005). The multitude of

processing descriptions arising from studies in these domains

suggests that distinct regions in parietal cortex might subserve

unique functional contributions. As Devlin and Poldrack (2007)

have argued, the success of functional neuroimaging is contin-

gent on the ability to accurately and precisely map function to

underlying neuroanatomy. The primary goal of the current study

is to better define divisions that exist within LLPC. As a means of

identifying potential distinctions, we use a combined resting-

state functional connectivity MRI (rs-fcMRI) and functional MRI

(fMRI) approach. The fMRI data includes studies related to

memory retrieval, which will be used to leverage the distinctions

seen with rs-fcMRI-based analyses and to better understand

how specific LLPC regions contribute to this domain.

Determining the functional-neuroanatomical correlates of

memory retrieval has driven a considerable amount of work in

cognitive neuroscience. In particular, a great deal of research

has been aimed at understanding how humans distinguish

between previously experienced information (‘‘old’’) and that

which is novel (‘‘new’’) (Henson et al., 2000; Konishi et al.,

2000; McDermott et al., 2000; Wheeler and Buckner, 2003).

Using fMRI, researchers have classified a set of regions in the

brain that tend to be more active when human subjects correctly

identify an item as old (‘‘hit’’) than when a given item is correctly

identified as being new (‘‘correct rejection’’). This difference in

activation has come to be called the ‘‘retrieval success effect’’

and is present in a highly distributed set of brain regions. The

most common regions showing retrieval success effects are in

lateral parietal cortex (Simons et al., 2008), and though this

differential activation is typically bilateral, the most robust

effects include a large expanse of LLPC (McDermott et al.,

2009).
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Figure 1. An Outline of the Analysis Stream
The analyses presented in the results comprise four sections represented in

this 2 3 2 diagram.

Neuron

Parcellation Scheme for Parietal Cortex
A number of laboratories (Cabeza et al., 2008; Ciaramelli et al.,

2008; Vilberg and Rugg, 2008) have begun exploring the role of

LLPC contributions to memory retrieval by performing metaanal-

yses in which data from large numbers of studies involving

a variety of different retrieval tasks are analyzed in a common

stereotactic space. The anatomical location of foci within LLPC

can be differentiated on the basis of responses in paradigms

contrasting recollection and familiarity, or source and item

memory, as well as a number of other tasks in which old and

new information is embedded. A consistent finding across these

studies is the presence of a dorsal-ventral distinction in LLPC

that appears to dissociate regions near intraparietal sulcus

(IPS) involved in familiarity judgments (dorsal), and regions

near angular gyrus involved in recollection (ventral) (Henson

et al., 1999; Wheeler and Buckner, 2004).

Mapping estimates of recollection and familiarity onto distinct

regions of LLPC represents one way in which the functional

neuroanatomy underlying separate types of processing can be

distinguished. However, even within the domain of memory

retrieval, this distinction does not represent an extensive view

of possible parcellations of LLPC. Further, a failure to incorpo-

rate ‘‘nonretrieval’’ related accounts of parietal mechanisms

could result in an incomplete description of boundaries that exist

within LLPC. A deeper understanding of the processing roles

of LLPC is likely to be bolstered by the ability to apply objective

parcellation schemes using a variety of analysis techniques.

One such technique, rs-fcMRI boundary mapping, is based on

the observation that rs-fcMRI can dissociate regions within the

cortex using edge-detection algorithms (Cohen et al., 2008).

This procedure uses a seed-based approach (Biswal et al.,

1995; Fox et al., 2005) to identify regions whose rs-fcMRI-derived

time course is significantly correlated with the time course of the

seed location. The result is a whole-brain correlation map that

indicates the degree of correlation between the seed and all other

voxels in the brain. Specifically, the technique developed in

Cohen et al. (2008) detects transitions between whole-brain

correlation maps of nearby cortical seeds, and translates these

abrupt transitions into boundaries between cortical regions.

A key concept underlying this approach that will be underscored

by the present report is that global brain relationships can facili-

tate the parcellation of anatomically adjacent pieces of cortex.

The current study begins with such rs-fcMRI boundary

mapping to identify ‘‘correlationally’’ distinct regions in LLPC.

These regions then serve as a launching point from which to

probe a set of recognition memory fMRI studies for distinctions

within LLPC. We find that LLPC regions divide along anatomical

lines into an anterior group that does not display retrieval

success effects, and a posterior group that does. These findings

are augmented with large-scale network analysis of rs-fcMRI

signal correlations between LLPC regions and regions located

outside of LLPC using tools from graph theory. This analysis

confirms the anterior/posterior distinction and divides the

retrieval success regions into four groups embedded in distinct

whole-brain rs-fcMRI networks. This final LLPC parcellation

scheme is then corroborated by demonstrating that within the

distinct whole-brain networks, the task-evoked signals shown

by LLPC regions are shared by distinct sets of regions outside

of LLPC.
RESULTS

Description of Analysis Stream
The results presented here can be viewed as the application of

multiple analyses to two distinct imaging methodologies (fMRI

and rs-fcMRI) both locally (within LLPC) and for distributed

sets of regions (large-scale cortical networks) (Figure 1).

Left Lateral Parietal Cortex: rs-fcMRI
Fifteen Regions of Interest Were Defined within a Grid

Applied to LLPC

In order to parcellate LLPC and investigate its functional proper-

ties, an understanding of the local topography and heterogeneity

is a critical starting point. The discovery that boundaries can be

defined on the basis of abrupt changes in whole-brain rs-fcMRI

maps (Cohen et al., 2008) provided a method (rs-fcMRI bound-

ary mapping) by which to place regions of interest (ROI) in loca-

tions where rs-fcMRI maps are relatively stable and interrogate

their function.

For the purposes of this experiment, a 27 3 27 grid of small

spherical foci (6 mm diameter) was generated over the extent

of LLPC (Figure 2A) using Caret software (Van Essen et al.,

2001). The grid extended outside of traditional bounds of parietal

cortex to decrease the chance that any functional borders near

the anatomical boundaries of LLPC would go undetected.

The resulting rs-fcMRI boundary map that depicts the bound-

ary likelihood at any given focus in the patch is shown in

Figure 2B. ‘‘Hot’’ and ‘‘cool’’ colors indicate high and low prob-

abilities, respectively, of the existence of a boundary.

The apparent centers of the bounded regions in LLPC were

obtained by inverting the map such that ‘‘hot’’ colors now indi-

cated rs-fcMRI map consistency between nearby seeds (Figures

2C and 2D). ROIs were defined as 10 mm diameter spheres at

peak locations using 2D peak-finding algorithms. This resulted

in 25 ROIs across the grid. Ten of the defined ROIs were outside

of parietal cortex and were excluded from further analyses,

leaving 15 LLPC ROIs as the targets of additional investigation.

Left Lateral Parietal Cortex: fMRI
Regions Located More Posteriorly in LLPC Showed

Retrieval Success Effects

We next applied these LLPC ROIs to a number of studies that con-

tained a contrast of ‘‘old’’ versus ‘‘new’’ items and performed a
Neuron 67, 156–170, July 15, 2010 ª2010 Elsevier Inc. 157



Figure 2. rs-fcMRI Data Were Used to

Generate Probabilistic Boundary Maps for

the Purpose of Defining Regions in LLPC

(A) A square patch of 729 spherical foci (6 mm

diameter, 27 3 27 grid, spaced 6 mm apart) was

created using Caret software (Van Essen et al.,

2001) and is shown here on an inflated cortical

surface rendering. The surface is rotated to allow

better visualization of LLPC. A, anterior; P, poste-

rior; L, lateral; M, medial.

(B) rs-fcMRI boundary map indicating the likeli-

hood of a border at each seed. ‘‘Cooler’’ colors

represent stable rs-fcMRI patterns, whereas

‘‘hotter’’ colors represent high border likelihood,

i.e., rapidly changing rs-fcMRI patterns.

(C) Inverted rs-fcMRI boundary map demon-

strating peaks of stability from the previous map.

Centers are shown as dark gray spheres (10 mm

diameter) on the inflated surface. The blue circle

indicates regions of interest (ROI) located within

LLPC.

(D) Unprojected data from (C) allowing better visu-

alization of borders. Gray dots represent ROIs with

those circled in blue indicating regions located

within LLPC. For orientation purposes, the grid

contains anatomical labels that roughly corre-

spond to these locations on the cortical surface.

SMG, supramarginal gyrus; SPL, superior parietal

lobule; IPS, intraparietal sulcus.
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metaanalysis (Table 1). Only the seven more posterior ROIs

showed consistent retrieval success effects (Figure 3A, green cir-

cles), defining a strong functional boundary between region sets.

Previously, it was speculated that retrieval success regions

may be divided through the examination of differential time

course dynamics in adjacent regions and that this would be crit-

ical in determining an appropriate level of parcellation in LLPC

(Wheeler and Buckner, 2004). With this in mind, we extracted

time courses from three LLPC ROIs near those investigated in

Wheeler and Buckner (2004) located in posterior middle intrapar-
Table 1. Experimental Details for Tasks Included in the Analysis

Study/Publication Task Condition

Donaldson et al. (2010) source memory (target correct [hit] versus

Phillips et al. (2009) old/new (hit versus CR)

Velanova et al. (2003) old/new (13 hit versus 13 CR) and old/ne

(203 hit versus 203 CR)

Wheeler and Buckner (2003) source memory ([13 hit + 203 hit] versus

Wheeler and Buckner (2004) (remember [hit] + know [hit]) versus CR

Unpublished dataa old/new (hit versus CR) and old/new (hit v

Additional details can be found in the published manuscripts listed in the ta
a Unpublished data from two tasks wherein subjects are asked to respond ‘‘o

(standard old/new paradigm).
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ietal sulcus (pmIPS), posterior inferior parietal lobule (pIPL), and

angular gyrus (AG) (Figures 3B–3D) to determine whether there

was a difference in their profiles. A region 3 time repeated-

measures ANOVA with three levels of region and 14 levels of

time (seven time points each for hit and cr) showed a significant

interaction effect (F(12,84) = 17.35, p < 0.001). Post-hoc analyses

revealed a significant region 3 time interaction for all three

pairwise comparisons of time courses including pmIPS versus

pIPL (F(12,84) = 13.13, p < 0.001), pmIPS versus AG (F(12,84) =

28.43, p < 0.001), and pIPL versus AG (F(12,84) = 6.99, p < 0.001).
Input Modality Output Modality Subjects

CR) words button 26

words button 12

w words button 29

CR) pictures/sounds/words button 29

pictures/words button 20

ersus CR) words button 24

ble.

ld’’ or ‘‘new’’ to words that they had either seen once or had not seen at all



Figure 3. Regions Showing Retrieval

Success Effects Are Located in Posterior

Parietal Cortex

(A) ROIs circled in green indicate those that

showed retrieval success effects across the eight

studies that comprised the metaanalysis, while

ROIs circled in red did not. The thick black line

indicates this distinction. ROIs are displayed on

inflated cortical surface renderings of the human

brain using Caret software.

(B–D) Time courses from regions showing retrieval

success effects. Posterior middle IPS (pmIPS),

posterior IPL (pIPL), and angular gyrus (AG) time

courses correspond to (B), (C), and (D) as labeled

in (A). p values indicate level of significance for

hit > correct rejection.
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Although there is a clear statistical dissociation between IPS

and AG time courses (Figures 3B and 3D), the time course in

pIPL (Figure 3C) does resemble an average of IPS and AG time

courses. Thus, while the time course in pIPL may reflect a truly

distinct signal, the possibility exists that this is simply an artifact

of the spatial averaging of the signals from pmIPS and AG. The

close proximity of these regions poses problems as we attempt

to draw functional distinctions. The question of how to resolve

thisambiguitymotivated, inpart, the remaininganalyses (Table2).
Table 2. Response 3 Time Repeated-Measures ANOVA Performed on 15 LLPC ROIs

LLPC Region X Y Z F Statistic(6,

Posterior IPS �24 �67 48 4.18

Posterior middle IPS �32 �62 48 9.22

Anterior middle IPS �35 �53 49 12.93

Anterior IPS �39 �44 44 4.86

Anterior IPL �54 �47 48 3.09

AG �45 �67 36 10.97

Posterior IPL �40 �62 48 8.97

SMG �56 �42 31 1.49

Anterior SMG �63 �29 26 1.11

Anterior IPL �60 �40 44 1.35

Lateral anterior IPS �55 �28 38 0.87

Anterior IPS �40 �37 47 1.64

Dorsal anterior IPS �36 �41 54 2.98

SPL �29 �44 65 5.53

Dorsal SPL �24 �58 62 0.29

Significant statistical effects (p < 0.05) are shown in bold text. X, Y, and Z values correspond to stere

Neuron 67, 156–
Parietal-Cortical Networks:
rs-fcMRI
Since the initial definition of the LLPC

regions was driven by differences in

whole-brain rs-fcMRI relationships, one

avenue toward addressing this ambiguity

is to interrogate the whole-brain relation-

ships of specific regions of LLPC. In other

words, which regions outside of LLPC are
most strongly functionally connected to each of the LLPC

regions (the region’s ‘‘neighborhood’’), and do regions in dif-

ferent neighborhoods show distinct functional time courses?

If an LLPC region, such as pIPL, possesses a functional (fMRI),

task-evoked time course reflecting some functional process,

do other regions in its neighborhood share similar functional

time courses? The following sections aim to provide answers

to these questions through the exploration of relationships of

LLPC regions to regions elsewhere in the brain. The next step
42) p Value Effect

0.002 Hit > CR

<0.001 Hit > CR

<0.001 Hit > CR

0.001 Hit > CR

0.01 Hit > CR

<0.001 Hit > CR

<0.001 Hit > CR

0.21 none

0.37 none

0.26 none

0.52 none

0.16 none

0.02 CR > Hit

<0.001 CR > Hit

0.94 none

otactic coordinates in MNI space.

170, July 15, 2010 ª2010 Elsevier Inc. 159



Figure 4. Generation of Neighborhoods for Each Location within

LLPC Yielded 87 Additional Regions of Interest

(A) An example neighborhood (yellow spheres) derived from a seed location

(gray sphere) in left AG (one neighbor in right cerebellum not shown).

(B) Left hemisphere view of each seed’s z-score normalized correlation map.

Seed ROIs are indicated by a gray sphere and neighbors for each seed are

indicated by yellow spheres.

(C) Aggregate neighbor ROIs (102 total) from all 15 neighborhoods. Overlap-

ping regions derived from multiple neighborhoods were combined by aver-

aging in stereotactic space. Gray circle indicates the original 15 LLPC ROIs.
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is to define sets of regions that are related to LLPC regions using

rs-fcMRI data.

‘‘Neighborhood’’ Generation Identified Regions Outside
of LLPC Related to the LLPC ROIs
Although rs-fcMRI boundary mapping and subsequent peak-

finding algorithms can separate adjacent cortex into distinct

regions based on underlying differences in rs-fcMRI correlation

maps, they do not reveal what the actual underlying differences

are that drive these spatial distinctions. To explore these differ-

ences, we generated rs-fcMRI ‘‘neighborhoods,’’ defined as

the sets of regions most highly correlated with each of the 15

LLPC ROIs.

Figure 4A shows an example neighborhood derived from

a seed location in left AG, one of the LLPC ROIs examined in

the previous analysis (see Figure 3D). For a given seed location,

the 15 most correlated regions were included to ensure

a manageable aggregate set from all LLPC ROIs (see Experi-

mental Procedures section on rs-fcMRI ‘‘Neighborhood’’ gener-

ation). It is important to note that since boundaries indicate

abrupt change in whole-brain rs-fcMRI maps, adjacent regions

will likely contain different, but potentially overlapping, sets of

neighbors.

Figure 4B depicts the seed maps for all 15 LLPC ROIs and

a portion of the identified neighbors for each ROI on the left

lateral surface of the cortex. Neighbors that appeared in more

than one seed map were consolidated to eliminate overlap

(see Experimental Procedures), resulting in 87 final neighbors

that spanned the cortex and cerebellum (Figure 4C, cerebellum

not shown). The 87 neighbors and 15 LLPC ROIs formed a collec-

tion of 102 ROIs, which could then be viewed as a network of

102 nodes related to each other by rs-fcMRI correlations.

Modularity Optimization Identified Four Modules
within the 102 ROIs
The next set of analyses was aimed at understanding this

network, and in particular, whether distinct groupings or

‘‘modules’’ existed within the network, which might provide

further distinctions between the LLPC ROIs. Tools from graph

theory have become instrumental in determining structure within

large-scale brain networks (Bullmore and Sporns, 2009; Sporns

and Zwi, 2004). Networks are collections of items (nodes)

possessing pairwise relations (edges) between each item, and

community-detection analyses can decompose networks into

functionally related subsets of nodes called ‘‘communities’’ or

‘‘modules.’’ For example, a person’s social network might

include a module of coworkers, a module of relatives, and a

module of teammates, each of which is richly connected inter-

nally, but possesses few connections to other modules. To

assess the underlying grouping of our LLPC ROIs and their

neighbors, community detection analysis using modularity opti-

mization (Newman, 2006) was performed on the matrix of pair-

wise rs-fcMRI correlations between the 102 ROIs.

Modularity optimization separated the ROIs derived from the

neighborhood analysis into four distinct sets of regions, or

modules (Figure 5; Figure S1, available online). The supramargi-

nal gyrus (SMG) module (blue, Figures 5A and 5B; Table 3)

included regions in bilateral SMG, anterior and posterior insula,
160 Neuron 67, 156–170, July 15, 2010 ª2010 Elsevier Inc.
frontal operculum, dorsal anterior cingulate cortex (dACC), and

supplementary motor area (SMA). The superior parietal lobule

(SPL) module (orange, Figures 5A and 5B; Table 3) contained



Figure 5. Modularity Optimization Identified Four

Modules within the Neighborhoods Generated

from the 15 Seed Locations

(A) Modularity optimization assignments shown in LLPC.

Lines drawn in LLPC delineate the module assignments

(SMG, blue; SPL, orange; IPS, brown; AG, light purple).

The thick yellow line indicating the functional distinction

made based on the presence or absence of retrieval

success effects (Figure 3) was replicated using modularity

optimization.

(B) Modularity optimization assignments shown on lateral

and medial views using Caret software. Colors are same

as in (A).

(C) Modularity optimization assignments are represented

by the color of each of the nodes (colors are same as

in A). The placement of each node is determined by

a spring-embedding algorithm that takes into account

both the presence and strength of node-node connections

(rs-fcMRI correlations). The graph represents the global

relaxation of the connections at a threshold (R R 0.10)

into a low energy state (see also Figure S1).
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regions in bilateral SPL, putative human ‘‘frontal eye fields’’

(FEF), anterior IPS, and postcentral gyrus. The IPS module

(brown, Figures 5A and 5B; Table 4) included regions in bilateral

IPS, dorsal frontal cortex, dorsolateral prefrontal cortex (dlPFC),

anterior PFC (aPFC), and lateral temporal cortex. The AG module

(light purple, Figures 5A and 5B; Table 4) consisted of regions in

bilateral AG, posterior cingulate, medial PFC (mPFC), superior

frontal gyrus (FG), ventrolateral PFC, anterior lateral temporal

cortex, posterior IPL, and right cerebellum.

These assignments can be visualized using a spring-embed-

ding algorithm in which the placement of each region or node

in 2D space (Figure 5C) reflects relative node-node connection

strengths. Thus, there should be visual overlap between relation-

ships defined by modularity and spring embedding as both are

dictated by correlations between the same set of regions, and

this is the case here (Figure 5C).

The graph theory analyses revealed four modules, all of which

contained regions both within LLPC and throughout the rest of

the brain (Figures 5A and 5B). Strikingly, even though the modu-

larity analysis contained no a priori information with regard to

retrieval success effects, it still finds the same distinction within

LLPC between regions in SPL and SMG and those located in AG

and IPS. The dissociation found based on the presence or

absence of a retrieval success effect across the LLPC ROIs

(see Figure 3A) is replicated exactly and is extended in the modu-

larity optimization analysis. This result is indicated by the thick
Neuron 67
yellow line in Figure 5A, separating anterior

from posterior modules/regions in an identical

manner.

Hierarchical Structure in Modules
Containing Retrieval Success Effects
Revealed a Further Distinction
in LLPC ROIs
We next conducted two modularity optimization

analyses separately on retrieval success

regions (the AG and IPS modules) and nonre-
trieval success regions (the SMG and SPL modules). This was

done to determine whether there was further division among

functionally similar regions that might have been overshadowed

in a modularity optimization procedure containing functionally

disparate regions.

Performing modularity optimization on the set of nonretrieval

success regions did not result in any additional parietal distinc-

tions from the SMG and SPL module assignments seen in the

initial large-scale analysis. However, regions in SMA and dACC

were placed into a small separate ‘‘submodule’’ (dark green,

Figures 6A and 6D; Table 3; Figure S2, available online). Because

the SMG module also contained regions along the extent of the

bilateral insula, the final submodule will be referred to as the

SMG/insula submodule (blue, Figures 6A, 6C, and 6D; Table

3). Additionally, because the final SPL submodule also contained

regions in putative human FEF, it will be referred to as the

SPL/FEF submodule (orange, Figures 6A, 6C, and 6D; Table 3).

Modularity optimization of the LLPC retrieval success regions

(AG and IPS modules) revealed distinctions not seen in the large-

scale modularity analysis. The original IPS module was sepa-

rated into four distinct submodules, two of which contained orig-

inal LLPC ROIs. One of these submodules (light blue, here

labeled LIPS/dlPFC) contained four LLPC ROIs that lined the

IPS, as well as other regions in frontal and temporal cortex

(Figures 6B–6D; Table 3; Figure S2). The second submodule

(light green, here labeled aIPL/aPFC) contained an LLPC region
, 156–170, July 15, 2010 ª2010 Elsevier Inc. 161



Table 3. Regions Belonging to the SPL and SMG Modules and

Their Corresponding Submodule Assignment

Region X Y Z Module Submodule

R lateral anterior IPS (1) 55 �20 42 SPL SPL/FEF

R FEF (2) 26 �4 55 SPL SPL/FEF

R SPL (3) 25 �51 64 SPL SPL/FEF

R anterior IPS (4) 42 �33 51 SPL SPL/FEF

L FEF (5) �27 �7 55 SPL SPL/FEF

R FEF (6) 25 �15 69 SPL SPL/FEF

L FEF (7) �18 �10 63 SPL SPL/FEF

L SPL (8) �17 �47 68 SPL SPL/FEF

R SPL (9) 35 �37 62 SPL SPL/FEF

R SPL (10) 14 �46 60 SPL SPL/FEF

L anterior IPS (11) �44 �25 56 SPL SPL/FEF

R postcentral gyrus (12) 39 �17 60 SPL SPL/FEF

R SPL (13) 18 �33 60 SPL SPL/FEF

L medial anterior IPS (14) �40 �37 47 SPL SPL/FEF

L lateral anterior IPS (15) �55 �28 38 SPL SPL/FEF

L SPL (16) �24 �58 62 SPL SPL/FEF

L SPL (17) �29 �44 65 SPL SPL/FEF

L anterior IPS (18) �36 �41 54 SPL SPL/FEF

R SMA (19) 9 �11 52 SPL SMA/dACC

L SMA (20) �1 �1 52 SMG SMA/dACC

L dorsal anterior cingulate (21) �5 8 37 SMG SMA/dACC

R SMA (22) 2 �6 64 SMG SMA/dACC

R SMA (23) 8 3 59 SMG SMA/dACC

R dorsal anterior cingulate (24) 1 16 28 SMG SMA/dACC

R pre-SMA (25) 5 6 42 SMG SMA/dACC

L anterior IPL (26) �60 �40 44 SMG SMG/insula

L inferior frontal (27) �47 �1 13 SMG SMG/insula

R inferior frontal (28) 39 �2 13 SMG SMG/insula

R middle insula (29) 39 5 2 SMG SMG/insula

R inferior frontal (30) 60 7 3 SMG SMG/insula

L anterior insula (31) �31 17 5 SMG SMG/insula

R anterior insula (32) 36 20 7 SMG SMG/insula

R SMG (33) 65 �24 25 SMG SMG/insula

L middle insula (34) �40 2 �1 SMG SMG/insula

L inferior frontal (35) �56 6 5 SMG SMG/insula

R inferior frontal (36) 51 0 8 SMG SMG/insula

R inferior frontal (37) 58 16 11 SMG SMG/insula

R anterior PFC (38) 35 49 32 SMG SMG/insula

R SMG (39) 68 �39 30 SMG SMG/insula

L posterior insula (40) �36 �16 �4 SMG SMG/insula

L inferior frontal (41) �56 �16 12 SMG SMG/insula

L inferior frontal (42) �51 �22 22 SMG SMG/insula

R inferior frontal (43) 45 12 �4 SMG SMG/insula

R SMG (44) 53 �34 26 SMG SMG/insula

L SMG (45) �56 �42 31 SMG SMG/insula

L SMG (46) �63 �29 26 SMG SMG/insula

X, Y, and Z values correspond to stereotactic coordinates in MNI space.

IPS, intraparietal sulcus; FEF, ‘‘frontal eye fields;’’ SPL, superior parietal

lobule; SMA, supplementary motor area; SMG, supramarginal gyrus.
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in left aIPL, along with a region in right aIPL, and regions in bilat-

eral aPFC (Figures 6B–6D; Table 3). The ‘‘non-LLPC submod-

ules’’ included a submodule that contained regions in right

IPS and right dlPFC (purple, RIPS/dlPFC; Figures 6B and 6D;

Table 3), while a fourth small submodule contained regions in

superior occipital cortex (teal, Figures 6B and 6D; Table 3).

The original AG module was separated into three distinct

submodules, two of which included original LLPC regions. An

AG/mPFC submodule (red, Figures 6B–6D; Table 3) contained

regions in medial frontal, temporal, and medial parietal cortex,

while a pIPL/sFG submodule (light yellow, Figures 6B–6D;

Table 3) included regions in superior frontal, anterior prefrontal,

and lateral temporal cortex. A third submodule that was not

highly interconnected with either the AG/mPFC or pIPL/sFG sub-

modules consisted of three regions in right cerebellum (light

brown, Figure 6B; Table 3).

Thus, as a result of modularity optimization on the AG and IPS

modules, a total of four submodules emerged that included

a region or regions within LLPC that exhibited retrieval success

effects in the initial fMRI analysis. In total, six submodules were

defined in LLPC. Importantly, the three LLPC regions that

showed the apparently distinct time course profiles (see Figure 3)

were also dissociated in the submodule analysis.

Parietal-Cortical Networks: fMRI
The final analysis seeks, in part, to further corroborate whether

the previously described intermediate time course in pIPL (see

Figure 3C) is functionally distinct by examining the time courses

in regions within its submodule. If they show a similar pattern to

the region in pIPL and are distinct from the AG/mPFC and LIPS/

dlPFC submodules, this would indicate that the pIPL time course

is indeed not an artifact of spatial blurring in LLPC. More gener-

ally, this analysis asks to what degree the distinctions found

using rs-fcMRI are reflected in task-evoked signals.

Regions Outside of LLPC Demonstrate Similar Retrieval
Success Effects and Time Course Dynamics
The characterization of submodules that consist of regions

outside of, but closely related to, each of the LLPC ROIs now

provides an opportunity to assess task-evoked signals at the

submodule level. Time courses for hits and correct rejections

were extracted from the regions comprising each of the four sub-

modules that contained an LLPC ROI exhibiting retrieval success

effects (see Table 2) across the eight tasks that defined the initial

metaanalysis. It is important to note that the following analyses

were performed on submodule ROIs in which the original time

courses from LLPC ROIs were excluded. As such, any observed

effects are necessarily independent of the initial fMRI analysis

that only examined LLPC ROIs.

We first conducted a submodule 3 time repeated-measures

ANOVA with four levels of submodule and 14 levels of time

(seven time points each for hit and cr) to determine whether

the distinctions among the time course profiles in specific

LLPC ROIs (Figures 7A–7D, and see Figure 3) were also present

at the submodule level. The omnibus ANOVA yielded a significant

effect of submodule 3 time (F(18,174) = 13.27, p < 0.001) and post-

hoc tests were performed on all pairwise combinations of sub-

modules (Table 5). This yielded significant effects of submodule



Table 4. Regions Belonging to the AG and IPS Modules and Their

Corresponding Submodule Assignment

Region X Y Z Module Submodule

L posterior cingulate (47) �1 �31 39 AG AG/mPFC

L anterior temporal (48) �59 �7 �17 AG AG/mPFC

R posterior cingulate (49) 1 �60 36 AG AG/mPFC

R posterior cingulate (50) 3 �47 35 AG AG/mPFC

R superior frontal (51) 19 35 50 AG AG/mPFC

R angular gyrus (52) 50 �60 34 AG AG/mPFC

L posterior cingulate (53) �7 �54 31 AG AG/mPFC

L dorsomedial PFC (54) �3 50 24 AG AG/mPFC

R anterior temporal (55) 63 �7 �17 AG AG/mPFC

L angular gyrus (56) �45 �67 36 AG AG/mPFC

L superior frontal (57) �18 29 54 AG AG/mPFC

R lateral cerebellum (58) 35 �72 �32 AG cerebellum

R medial cerebellum (59) 15 �84 �28 AG cerebellum

R lateral cerebellum (60) 35 �65 �41 AG cerebellum

L anterior PFC (61) �32 57 1 AG pIPL/sFG

L middle temporal (62) �63 �39 �4 AG pIPL/sFG

R middle temporal (63) 71 �37 �6 AG pIPL/sFG

R posterior IPL (64) 44 �56 41 AG pIPL/sFG

R superior frontal (65) 40 17 57 AG pIPL/sFG

R posterior IPL (66) 44 �63 52 AG pIPL/sFG

L dorsal anterior

cingulate (67)

�10 40 41 AG pIPL/sFG

L superior frontal (68) �31 17 55 AG pIPL/sFG

L superior frontal (69) �44 12 46 AG pIPL/sFG

L posterior IPL (70) �40 �62 48 AG pIPL/sFG

L ventrolateral PFC (71) �45 47 �11 AG aIPL/aPFC

L superior frontal (72) �29 6 61 IPS pIPL/sFG

R anterior PFC (73) 38 30 42 IPS aIPL/aPFC

L anterior IPL (74) �54 �47 48 IPS aIPL/aPFC

R anterior IPL (75) 56 �38 52 IPS aIPL/aPFC

R anterior PFC (76) 43 61 2 IPS aIPL/aPFC

R anterior PFC (77) 40 48 �2 IPS aIPL/aPFC

R ventrolateral PFC (78) 47 52 �13 IPS aIPL/aPFC

L anterior PFC (79) �44 51 4 IPS aIPL/aPFC

L dorsolateral PFC (80) �38 35 30 IPS LIPS/dlPFC

L dorsal frontal (81) �47 3 32 IPS LIPS/dlPFC

L posterior temporal (82) �52 �58 �6 IPS LIPS/dlPFC

L dorsolateral PFC (83) �42 38 11 IPS LIPS/dlPFC

L dorsolateral PFC (84) �45 29 25 IPS LIPS/dlPFC

L dorsal frontal (85) �39 15 25 IPS LIPS/dlPFC

L anterior middle IPS (86) �35 �53 49 IPS LIPS/dlPFC

L posterior IPS (87) �24 �67 48 IPS LIPS/dlPFC

L anterior IPS (88) �39 �44 44 IPS LIPS/dlPFC

L posterior middle IPS (89) �32 �62 48 IPS LIPS/dlPFC

R medial IPS (90) 18 �64 59 IPS RIPS/dlPFC

R posterior temporal (91) 53 �56 �9 IPS RIPS/dlPFC

R dorsolateral PFC (92) 47 42 19 IPS RIPS/dlPFC

R dorsal frontal (93) 47 9 31 IPS RIPS/dlPFC

Table 4. Continued

Region X Y Z Module Submodule

R middle IPS (94) 41 �43 45 IPS RIPS/dlPFC

R precuneus (95) 9 �69 54 IPS RIPS/dlPFC

R posterior IPS (96) 28 �68 50 IPS RIPS/dlPFC

R posterior middle IPS (97) 32 �51 48 IPS RIPS/dlPFC

R dorsolateral PFC (98) 38 30 22 IPS RIPS/dlPFC

L posterior temporal (99) �48 �72 �2 IPS RIPS/dlPFC

L superior occipital (100) �26 �80 28 IPS superior

occipital

R superior occipital (101) 47 �77 13 IPS superior

occipital

R superior occipital (102) 38 �80 23 IPS superior

occipital

X, Y, and Z values correspond to stereotactic coordinates in MNI space.

PFC, prefrontal cortex; IPL, inferior parietal lobule; IPS, intraparietal

sulcus.
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3 time for five of the six comparisons, with the exception being

pIPL/sFG versus aIPL/aPFC (Table 5). Thus, the time course

profiles between the AG/mPFC, pIPL/sFG, and LIPS/dlPFC sub-

modules are distinct from one another, mirroring both the

apparent time course distinctions of Figure 3, and the modularity

analysis that defined submodules (see Figure 6). Additionally,

regions in the pIPL/sFG and aIPL/aPFC submodules were disso-

ciable throughout all levels of the rs-fcMRI analyses (see Figures

5 and 6); however, the lack of a submodule 3 time interaction

suggests that each may contain a similar processing mechanism

by virtue of their time course profiles.

We were also interested in determining which submodules, if

any, showed retrieval success effects. Importantly, each of the

four submodules showed a significant response 3 time interac-

tion (two levels of response and seven levels of time) when aver-

aging across regions outside of LLPC (Figures 7E–7H; Table 5),

such that hits were greater than correct rejections. Additionally,

we examined whether or not response 3 time interactions were

present in submodules whose LLPC ROIs did not originally show

retrieval success effects (SPL/FEF and SMG/insula). Neither

submodule exhibited an effect of response 3 time (data not

shown), which again mirrors the effects seen in the related

LLPC regions.
DISCUSSION

By applying graph theoretic tools and image analysis algorithms

to a combination of functional and resting-state data, we were

able to tease apart details of cortical network architecture. The

result of these analyses was a parcellation scheme for LLPC

that was informed by distinct types of data, the convergence

of which lends credence to the LLPC boundaries and networks

defined here. We think that this work provides a new lens by

which to view LLPC and should inform functional studies by

providing an anatomical platform from which to map information

processing within this large region of cortex.

Generally speaking, the rs-fcMRI boundary mapping ap-

proach has the ability to provide unique insight into the structure
Neuron 67, 156–170, July 15, 2010 ª2010 Elsevier Inc. 163



Figure 6. Modularity Optimization Per-

formed Separately on Modules Not Showing

Retrieval Success Effects (SPL and SMG)

and Retrieval Success Modules (AG and

IPS)

(A) The SPL and SMG modules did not split into

separate submodules, though regions within the

supplementary motor area (SMA) and dorsal ante-

rior cingulate cortex (dACC) separate from the two

(SMA/dACC, dark green). The SPL module is now

labeled SPL/FEF and the SMG module is now

labeled SMG/insula to more appropriately

describe the distributed regions contained therein.

Graph methods are as described in Figure 5

and text.

(B) The AG and IPS modules each split into

multiple separate submodules, four of which

(AG/mPFC [red], pIPL/sFG [light yellow], LIPS/

dlPFC [light blue], aIPL/aPFC [light green]) con-

tained regions within LLPC showing retrieval

success effects. Regions in the right IPS and right

dlPFC (RIPS/dlPFC, purple), cerebellum (light

brown), and superior occipital cortex (SOC, teal)

were also found to be distinct from the other

regions. Parameters dictating the placement of

nodes in network space are the same as in (A).

(C) Modularity optimization assignments shown in

LLPC. Lines drawn in LLPC delineate submodule

assignments. Colors are same as in (A) and (B).

(D) Modularity optimization shown on lateral and

medial views of the cortex using Caret software.

Cerebellum (light brown in B) not shown. Colors

are same as in (A) and (B) (see also Figure S2).
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and function of locations spanning the entire cortex. In addition,

it provides a set of ROIs that can be used to interrogate local

functional distinctions and global network properties. The

discussion that follows outlines the importance of the integrated

analysis approach, as well as potential roles for the four ‘‘retrieval

success’’ submodules defined in the graph theoretic analyses.

In addition, other distinctions are outlined between our submod-

ules and similar regions and networks that have been described

in previous studies.
An Integrated fMRI and rs-fcMRI Approach
One of the themes in the work presented here is the correspon-

dence between networks discovered from data collected while

subjects lie in the scanner fixating a central crosshair (rs-fcMRI),

and data collected while subjects are engaged in a cognitively

demanding task. These types of data differ not only on the basis

of task demands (or lack thereof), but also in the time scales they

sample. rs-fcMRI analyses here reflect correlations in low-

frequency fluctuations of the blood oxygen level-dependent

(BOLD) response (0.009–0.08 Hz) over many minutes, whereas

task-related fMRI analyses reflect transient activations or deac-

tivations over several seconds.

Why would such a high degree of similarity exist in networks

defined from these seemingly disparate forms of data and anal-

yses? We have hypothesized (Dosenbach et al., 2008; Fair et al.,

2007) the answer to be rooted in a Hebbian-like mechanism

whereby regions that tend to coactivate across task settings

reduce the overall threshold for propagation of signals between
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them via direct or indirect connections. Over time, the correlation

between the ‘‘spontaneous’’ activity in two regions will tend to

reflect their statistical history of coactivation across the myriad

everyday ‘‘tasks’’ performed by the individual.

The approach employed here provides a means of identifying

regions whose relationship can be gleaned from rs-fcMRI data

and interrogated further in a variety of task settings, the combi-

nation of which has the potential to yield a richer set of results

than can be obtained by each method individually.
Regions in the LIPS/dlPFC Submodule Have Been
Implicated in Processes Related to Familiarity
Judgments and Attentional Control
In the context of memory retrieval studies, regions in left IPS have

been implicated in a number of processing roles including, most

notably, familiarity judgments (Henson et al., 1999; Wheeler and

Buckner, 2004; Yonelinas et al., 2005). Recent metaanalytic

studies have revealed the presence of consistent familiarity-

related activation along the lateral bank of the IPS (Cabeza

et al., 2008; Vilberg and Rugg, 2008), at or near the location of

the regions described in our experiments (see Figure 7C). In addi-

tion, other experiments have shown familiarity-related activation

in left dlPFC and dorsal frontal cortex (Yonelinas et al., 2005).

Studies not explicitly testing memory retrieval have also noted

activity in similar regions. For instance, a metaanalysis published

by Dosenbach et al. (2006) highlighted the presence of con-

sistent start-cue effects in left IPS. This effect, which occurs

when subjects are alerted that trials within a task block are about



Figure 7. Four rs-fcMRI-Derived Submodules Show Different Task-Evoked fMRI Time Course Dynamics and Retain Retrieval Success

Effects Independent of the LLPC ROIs
(A) A region in angular gyrus (AG) is shown on a lateral view of the left hemisphere using Caret software. Time courses (below) were extracted for hits and correct

rejections across the eight studies that comprised the metaanalysis. p values represent the significance of the difference between hits and correct rejections

determined by a response 3 time repeated-measures ANOVA with two levels of response and seven levels of time.

(B–D) Same as in (A) but for pIPL (B), LIPS (C), and aIPL (D).

(E) All ROIs in the AG/mPFC submodule excluding AG are shown on lateral and medial views of the cortex using Caret software. Time course data was extracted

as in (A) but is averaged across all ROIs shown here. p values are same as in (A).

(F–H) Same as in (E) but for pIPL/sFG (F), LIPS/dlPFC (G), and aIPL/aPFC (H).
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to begin, appears to be domain general and is also seen when

subjects are cued in a trial-wise manner to switch tasks or

response contingencies (Bunge et al., 2002; Rushworth et al.,

2001). Reliable start-cue effects are also seen in regions at or

near bilateral dlPFC and dorsal frontal cortex.

Furthermore, this same set of regions appears to show greater

responses when subjects make an error than when they respond

correctly to a given item (Dosenbach et al., 2006; Wheeler et al.,

2008). This effect, as with start cues, seems to occur largely

independently of domain or task parameters. In addition to the

task-evoked data, there is also evidence from functional con-

nectivity data that regions in left IPS and dlPFC are part of

a network (Dosenbach et al., 2007; Seeley et al., 2007) that

supports flexible attentional control mechanisms.

Thus, activation of these regions during familiarity judgments

may reflect control processes that are deployed when subjects

are unable to determine with certainty whether an item is one

they remember having encoded or not. In addition, reaction

times for familiarity decisions tend to be greater than
‘‘remember’’ or ‘‘new’’ judgments (Wheeler and Buckner, 2004;

Yonelinas et al., 2005), perhaps reflecting additional demand

on attentional resources.

It is important to note that the attention-related effects

described here may be distinct from shifts in visuospatial atten-

tion and orienting that are characteristic of regions in the dorsal

attention system (Corbetta and Shulman, 2002), which we

believe are captured in the SPL/FEF submodule. Hutchinson

et al. (2009) provide evidence along these lines using metaana-

lytic data to distinguish between regions at or near the LIPS/

dlPFC submodule that show memory retrieval related effects

and regions in the SPL that show consistent effects related to

spatial attention in tasks not involving memory retrieval.

Regions in the AG/mPFC Submodule May Play a Role
in Reinstantiating Context-Specific Perceptual
Information
The AG/mPFC submodule consists of a number of regions that

have been previously defined by task-induced deactivations
Neuron 67, 156–170, July 15, 2010 ª2010 Elsevier Inc. 165



Table 5. Post-Hoc Statistical Effects from the Submodule 3 Time

Repeated-Measures ANOVA and Response 3 Time Repeated-

Measures ANOVA within Each Submodule

Submodules (w/o LLPC) Submodule 3 Time

AG/mPFC versus pIPL/sFG F(6,108) = 6.75, p < 0.001

AG/mPFC versus aIPL/aPFC F(6,90) = 6.21, p < 0.001

AG/mPFC versus LIPS/dlPFC F(6,84) = 47.06, p < 0.001

pIPL/sFG versus aIPL/aPFC F(6,90) = 0.38, p = 0.89

pIPL/sFG versus LIPS/dlPFC F(6,84) = 15.62, p < 0.001

aIPL/aPFC versus LIPS/dlPFC F(6,66) = 15.40, p < 0.001

Submodule (w/o LLPC) Response 3 Time

AG/mPFC F(6,54) = 12.50, p < 0.001

pIPL/sFG F(6,54) = 3.41, p < 0.01

aIPL/aPFC F(6,36) = 4.85, p < 0.01

LIPS/dlPFC F(6,90) = 26.36, p < 0.001
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(Shulman et al., 1997). More recently, rs-fcMRI analyses have

isolated a similar set of regions as being strongly correlated

with one another when a subject is not in any specific task setting

(Fox et al., 2005; Greicius et al., 2003). These regions have been

termed the ‘‘default mode network’’ and encompass those

obtained in the current study.

From the standpoint of memory retrieval, many of these

regions have been implicated in a wide variety of processing

roles including retrieval of autobiographical events or imagined

future events (Schacter et al., 2007; Szpunar et al., 2007),

remember judgments in the context of tasks probing recollec-

tion/familiarity distinctions (Henson et al., 1999; Wheeler and

Buckner, 2004), and high-confidence recognition memory judg-

ments (Yonelinas et al., 2005). In addition, a study from Kelley

et al. (2002) has also highlighted a role for posterior cingulate

and mPFC in making judgments related to trait adjectives that

are self relevant. These regions, similar to those highlighted in

autobiographical retrieval studies (McDermott et al., 2009),

seem to be important when stimulus information is related

more specifically to one’s own past. Similarly, the presence of

activation in angular gyrus and other ‘‘default’’ regions for

remember judgments may reflect the recollection of specific

details from the encoding event, eliciting a greater sense that

this item is ‘‘from their past.’’ Thus, the mechanism by which

these regions support retrieval-related processing may be

related to information that is not just simply ‘‘old,’’ but has

a more specific autobiographical signature.

Support for the importance of ‘‘my’’ past in understanding

activation in these regions comes from a study by Szpunar

et al. (2009), in which subjects were asked to either remember

events from their past or imagine personal events in the future;

critically, some of these future events were to be set in places

well known to the person, whereas others were to be set in unfa-

miliar settings. Activation in regions near angular gyrus and

posterior cingulate was similar for conditions in which subjects

remembered or imagined episodes in known contextual settings

(e.g., one’s backyard), but was attenuated when the future event

was projected to take place in a novel context (e.g., a safari).

In short, activation in these regions was modulated not by

whether a person was remembering an event or envisioning
166 Neuron 67, 156–170, July 15, 2010 ª2010 Elsevier Inc.
a novel event, but was instead modulated by whether the event

was placed in a well-known contextual setting or a novel setting.

Regions in the aIPL/aPFC Submodule Are Consistent
with Those Implicated in Postretrieval Monitoring
Regions in left lateral aPFC have been shown to support the

retrieval of source information (Dobbins et al., 2002) and con-

trolled semantic retrieval (Bunge et al., 2005) during memory-

based tasks, but appear to show little or less activation during

simple item memory judgments (Ranganath et al., 2000). Addi-

tionally, regions in right lateral aPFC have been most commonly

attributed to source or post-retrieval monitoring (Dobbins et al.,

2004). The claim that this signal occurs post retrieval relies on

the fact that information related to the temporal signature of

this activity in aPFC can be extracted. While the nature of the

hemodynamic response can make it difficult to determine

much in the way of timing relationships, late onset of activity

has been noted in these regions both in fMRI (Henson et al.,

2000; Reynolds et al., 2006; Schacter et al., 1997) and during

ERP studies (Rugg and Allan, 2000).

An examination of the literature on aPFC will often show that

IPL is activated for the same contrast (Dobbins et al., 2003,

2004), even though IPL regions are not typically highlighted.

Regarding the late onset of the response, a recent study by Phil-

lips et al. (2009) shows the time course of activity for a region very

near our left aIPL region (see Figure 7D) that exhibits an early

onset deactivation and a positive-going response that appears

to take place much later than in regions showing a more canon-

ical pattern of activity. This pattern of activation is similar to the

time courses observed in a study by Reynolds et al. (2006) that

also showed early onset deactivation with a very late positive

onset, which was noted to likely be occurring post response.

Our metaanalytic time course data are consistent with similar

types of processing that may occur post retrieval or post deci-

sion. Our data also appear to show an early onset deactivation

of the time course relative to baseline that looks similar to the

initial phase of the response in regions in the AG/mPFC submod-

ule. This finding may be evidence that the activity in this region

cannot be easily explained by a singular processing account.

Further studies will need to be done in an attempt to tease out

the implications of these timing dissociations to better under-

stand their meaning in the context of memory retrieval and other

task settings.

The pIPL/sFG Submodule May Implement Processes
Similar to Those in the aIPL/aPFC Submodule
The submodule analyses revealed a distinction between the

pIPL/sFG submodule and the AG/mPFC submodule. There is

little precedent in the literature for discussing processing distinc-

tions in regions that may be interposed between AG and IPS,

since typical regions of interest encompass much of one or the

other. Based on the initial modularity optimization analysis (see

Figure 5), the AG/mPFC and pIPL/sFG submodules appear

closely linked as they comprised only one module. Interestingly,

however, the time courses derived from the task-evoked fMRI

data in AG/mPFC appear to be most similar to those in the

aIPL/aPFC submodule (Figure 7; Table 3), with a negative

response on CRs and little change from baseline on hits. One
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possibility is that the pIPL/sFG submodule engages in similar

post-decision processing mechanisms as the aIPL/aPFC sub-

module by virtue of its similar time course profile, but preferen-

tially communicates with regions in the AG/mPFC submodule,

as indicated by the rs-fcMRI analyses, to relay information

related to the outcome of a trial.

Three Distinctions Exist within a Previously Defined
Unitary Fronto-Parietal Network
A study from Vincent et al. (2008) used rs-fcMRI to identify

a network anatomically located between regions in the superior

parietal lobule and the angular gyrus. In the current study, we find

further separation of this network, which they termed the fronto-

parietal control system (FPCS). Anatomically, the regions in

LLPC that correspond to left IPS (LIPS/dlPFC submodule),

aIPL (aIPL/aPFC submodule), and pIPL (pIPL/sFG submodule)

all lie within the FPCS boundaries. Important additional evidence

comes from the separation that we observe in bilateral frontal

cortex. The extent of cortex corresponding to the FPCS in

Vincent et al. (2008) contains regions that, in our hands, separate

into the same distinctions we see in LLPC including the presence

of separable members in dorsal frontal cortex and dlPFC (LIPS/

dlPFC submodule), aPFC (aIPL/aPFC submodule), and superior

frontal gyrus (pIPL/sFG submodule).

Conclusion
Taken together, we found evidence that LLPC contains regions

that are members of six submodules that span the cortex. This

set of observations underscores the importance of interpreting

data at a number of levels and with a number of different tech-

niques. We think that this work reveals key organizational

features of LLPC at both the region (local) and network (global)

level that should inform future attempts to map function to

structure.

EXPERIMENTAL PROCEDURES

Left Lateral Parietal Cortex: rs-fcMRI

Subjects

Subjects were recruited from the Washington University community and were

screened with a self-report questionnaire to ensure that they had no current or

previous history of neurological or psychiatric diagnosis. Informed consent

was obtained from all subjects, and the study was approved by the Washing-

ton University Human Studies Committee. rs-fcMRI data were collected on

28 subjects (14 female, age 21–29 years) who were instructed to relax while

fixating on a white cross on a black background. Three runs (2.5 s TR, 133

frames per run) were acquired on 21 subjects and two runs on the remaining

seven subjects.

Data Acquisition

Images were acquired in adherence to a standard protocol. To help stabilize

head position, each subject was fitted with a thermoplastic mask fastened

to the head coil. All images were obtained with a Siemens MAGNETOM Tim

Trio 3.0T scanner (Erlangen, Germany) and a Siemens 12 channel Head Matrix

Coil. A T1-weighted sagittal MPRAGE structural image was obtained (TE =

3.08 ms, TR [partition] = 2.4 s, TI = 1000 ms, flip angle = 8�, 176 slices with

1 3 1 3 1 mm voxels) (Mugler and Brookeman, 1990). A T2-weighted turbo

spin echo structural image (TE = 84 ms, TR = 6.8 s, 32 slices with 2 3 1 3

4mm voxels) in the same anatomical plane as the BOLD images was also

obtained to improve alignment to an atlas. An autoalign pulse sequence

protocol provided in the Siemens software was used to align the acquisition
slices of the functional scans parallel to the anterior commissure-posterior

commissure (AC-PC) plane and centered on the brain. This plane is parallel

to the slices in the Talairach atlas (Talairach and Tournoux, 1988) which is

used for subsequent data analysis. Functional imaging was performed

using a BOLD contrast-sensitive gradient echo echo-planar sequence (TE =

27 ms, flip angle = 90�, in-plane resolution = 4 3 4 mm). Whole-brain EPI

volumes (MR frames) of 32 contiguous, 4 mm-thick axial slices are obtained

every 2.5 s. The first four image acquisitions were discarded to allow net

magnetization to reach steady state.

MR Data Preprocessing

Imaging data from each subject were preprocessed to remove noise and arti-

facts, including: (1) correction for movement within and across runs using

a rigid-body rotation and translation algorithm (Snyder, 1996), (2) whole-brain

normalization to a common mode of 1000 to allow for comparisons across

subjects (Ojemann et al., 1997), and (3) temporal realignment using sinc inter-

polation of all slices to the temporal midpoint of the first slice, accounting for

differences in the acquisition time of each individual slice. Functional data

were then resampled into 3 mm isotropic voxels and transformed into stereo-

taxic atlas space (Talairach and Tournoux, 1988). Atlas registration involved

aligning each subject’s T1-weighted image to a custom atlas-transformed

(Lancaster et al., 1995) target T1-weighted template (711-2B) using a series

of affine transforms (Michelon et al., 2003).

rs-fcMRI Preprocessing

Preprocessing for rs-fcMRI analyses was performed on the fMRI data as in Fox

et al. (2005), to optimize the time-series data and remove spurious variance

unlikely to reflect neuronal activity (e.g., heart rate and respiration). These

steps included: (1) a temporal band-pass filter (0.009 Hz < f < 0.08 Hz) and

spatial smoothing (6 mm full width at half maximum), (2) regression of six

parameters obtained by rigid body head motion correction, (3) regression of

the whole-brain signal (the average time course of the whole brain), (4) regres-

sion of ventricular signal extracted from ventricular ROIs, and (5) regression of

white-matter signal extracted from white-matter ROIs. The first-order deriva-

tive terms for the movement, whole-brain, ventricular, and white-matter

signals were also included in the correlation preprocessing.

Surface-Based Analysis

In Cohen et al. (2008), seeds were defined directly on the individual subject’s

flattened cortical representation. Here, the PALS atlas family of surfaces was

used as a starting point to obtain common surface coordinates to use across

our group of subjects (Van Essen, 2005). The PALS atlas ‘‘fiducial’’ surface

represents the average of 12 individual gray midthickness surfaces each volu-

metrically registered to the 711-2B atlas. While the PALS fiducial surface does

not represent the actual fiducial surface of any specific individual, it can be

used to approximate average fiducial surface locations in group-averaged

data in the same volumetric atlas space. Using Caret 5.3 software (Van Essen

et al., 2001), a grid of seed points was generated on the spherical PALS surface

over LLPC and the volumetric locations on the corresponding PALS fiducial

surface in 711-2B atlas space were obtained.

rs-fcMRI Boundary Mapping

rs-fcMRI boundary mapping was then performed as in Cohen et al. (2008).

For our purposes, the set of volumetric coordinates for a patch over LLPC

was used to generate a set of 729 spherical ROIs (6 mm diameter). For each

seed, in each subject, volumetric correlation maps were generated as in Fox

et al. (2005), i.e., correlating the time course of a region of interest with the

time courses of all other voxels over the entire volume of the brain. This method

creates a volumetric correlation map for each seed. To generate maps of

statistical significance, correlation maps were normalized using the Fisher

r-to-z-transform, and then converted into statistical z-scores. A volumetric

average correlation map was then created for the group of subjects for each

seed region, producing a single set of correlation maps representing the whole

group, which is then used for the remaining analysis.

Eta2 coefficients were calculated for all possible pairs of volumetric correla-

tion maps, generating a 729 3 729 eta2 matrix where each column represents

the similarities between a particular region’s volumetric correlation map and all
Neuron 67, 156–170, July 15, 2010 ª2010 Elsevier Inc. 167
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other regions’ volumetric correlation maps. The full 729 3 729 eta2 matrix was

then reorganized into a series of 729 2D ‘‘patch-shaped’’ matrices such that

each matrix represents the spatial organization of similarity between all the

other seeds’ correlation maps to the current seed’s correlation map.

Edge-Detection Algorithms

Since the matrix of eta2 coefficients (i.e., eta2 profile) is a 2D array of values

across the cortical surface, it can also be treated as a flat image. To find salient

boundaries in these arrays, the Canny edge-detection algorithm (Canny,

1986), as implemented in the Image Processing Toolbox (v7.2) of the MATLAB

software suite, was applied to each seed’s eta2 profile ‘‘image.’’

The Canny method smoothes the image with a Gaussian filter to reduce

noise, and then creates a gradient image that locates regions that retain

high spatial derivatives. High gradient values represent locations where the

similarity between rs-fcMRI correlation maps is rapidly changing (i.e., they

are peaks in the first derivative). After eliminating pixels in the 2D array that

are not local maxima in the gradient image, the algorithm tracks along the high-

lighted regions of the image and categorizes each location as a boundary or

not. To prevent hysteresis, both a high and low threshold are used. If the

gradient magnitude of the pixel is below the low threshold, it is set to zero.

If the magnitude is above the high threshold, it is considered a boundary. If the

magnitude of the pixel is between the two thresholds, then the location is only

considered a boundary if a neighboring pixel has a gradient above the high

threshold. The primary goal is to identify and differentiate locations with strong,

spatially coherent peaks as being different from locations that are relatively

smooth or have incoherent gradient peaks across many of the eta2 profiles.

The result of processing the eta2 profile set with an edge-detection algorithm

is a set of binary images representing the locations of rapid changes in each

grid point’s eta2 profile.

Since the boundary determination is binary, averaging across the entire set

of binary edge maps generates a probabilistic boundary location map in which

intensity represents how likely a location is to be a putative functional

boundary.

LLPC ROI Identification

Inverting the boundary location map provides a map of centroid locations,

which can be used to generate regions using 2D local extrema algorithms

(MATLAB v7.2, Image Processing Toolbox) as well as custom-written software

that approximates established methods for detecting volumetric peaks of acti-

vation in task-evoked fMRI studies. The corresponding volumetric coordinates

for each region identified are then used to generate spherical ROIs (10 mm

diameter) for further analyses as described below.

Left Lateral Parietal Cortex and Parietal-Cortical Networks: fMRI

fMRI Metaanalysis of Studies Contrasting Hits versus Correct

Rejections

Studies included a total of 140 neurologically normal adults between the ages

of 18 to 35 who were recruited from both the Washington University and

University of Pittsburgh communities. Data were collected on either a 1.5T

Siemens MAGNETOM Vision Scanner (Washington University in St. Louis) or

a 3T Siemens Allegra Scanner (University of Pittsburgh). Studies included

a variety of different tasks in which judgments about item status were

embedded within various source attribution, remember/know, or basic old/

new decisions (Donaldson et al., 2010; Phillips et al., 2009; Velanova et al.,

2003; Wheeler and Buckner, 2003, 2004) (Table 1). In addition, the encoding

tasks contained either visual or auditory stimuli that were either presented

once or many times to enhance retrieval success.

MR Data Preprocessing

The same MR data preprocessing steps as used for the rs-fcMRI data (see

above) were used for the fMRI data.

Functional MRI Data Analysis Using the General Linear Model

BOLD activity related to the trials was modeled using a general linear model

(GLM) approach. Additionally, baseline and trend terms for each BOLD run

were included in the GLM. In each study, correct responses to both old and

new items were coded separately, as were other manipulations that were
168 Neuron 67, 156–170, July 15, 2010 ª2010 Elsevier Inc.
specific to each experiment. This approach is equivalent to estimating the

finite impulse response evoked by each event and eschews assumptions

about the form of the hemodynamic response function (Miezin et al., 2000;

Ollinger et al., 2001; Zarahn et al., 1997).

Analysis of Time Courses

rs-fcMRI derived regions were applied to the functional data to identify those

that showed reliable retrieval success activity. Spherical ROIs with a diameter

of 10 mm were created from the ‘‘peak’’ foci and the mean time course from all

eight tasks for each of the regions was obtained for both hits and correct

rejections.

Parietal-Cortical Networks: rs-fcMRI

rs-fcMRI ‘‘Neighborhood’’ Generation

As a means of determining the way in which LLPC regions differ from one

another, the rs-fcMRI ‘‘neighborhoods,’’ or the sets of regions that most

strongly correlated with each identified region, were generated (see Figure 4B).

A peak-finding algorithm was employed to determine the 15 most significant

peaks of positive correlation for each LLPC ROI. The number of ‘‘neighbors’’

(15) represents an attempt to strike a balance between defining too few and

too many neighbors for a given ROI. Too few neighbors would fail to

adequately characterize a network corresponding to a given seed and too

many neighbors would lead to the analysis of neighbors that are weakly corre-

lated. As a result of this criterion, the lowest z-score of the Fisher r-to-z trans-

formed values that corresponded to the most minimally significant peak was

not necessarily the same for each region. Nonetheless, all regions within

each of the neighborhoods showed strongly significant effects (z-scoremin =

5.31). In order to exclude regions with a significant degree of overlap, regions

closer together than 10 mm were replaced by the average of their stereotactic

coordinates.

Modularity Optimization Analysis

Networks with N nodes (regions) can be mathematically represented as a N 3

N matrix of relationships where cell ij contains the correlation coefficient of

region i with region j. Our networks are formed from correlation matrices, which

possess values from�1 to 1. These matrices may be thresholded, where cells

below some value are set to zero. As thresholds rise, the density of edges in the

network decreases, and at some point the network begins to fragment into

disconnected components. The properties of graphs may change as edges

are dropped from the network, and so it is important to explore a range of

thresholds to determine whether network properties are dependent upon the

threshold(s) being examined. An upper bound to this range is usually set by

fragmentation considerations, and the lower bound is set to avoid negative

and insignificant correlations.

Here, we report analyses from a (positive) range of thresholds over which

significant modular structure was found (Q > 0.30), and over which most nodes

(>80%) could reach most other nodes, indicating that the network was mini-

mally fragmented. Our module detection was performed with algorithms that

optimize ‘‘modularity’’ (Fair et al., 2009; Newman, 2006; Newman and Girvan,

2004), a metric of modular structure in networks. Modularity (Q) measures, for

a given partition of a network into modules, the number of connections found

within modules compared to the number of connections within modules

expected by chance given the number of nodes and connections in the

network. Our algorithm maximizes this metric, and returns the node assign-

ments into modules that yield the highest value. Typically, Q values over

0.30 are thought to indicate strong community structure (Fortunato, 2010;

Newman, 2006).

Spring Embedding Using Social Network Image Animator

Though the correlation matrix contains a complete description of the network,

it is information dense and difficult to inspect visually. To visualize the network

structure, we used a standard technique called spring embedding. Graphs

were created by using the Kamada-Kawai spring-embedding algorithm imple-

mented in the Social Network Image Animator (SoNIA) software package

(Bender-deMoll and McFarland, 2006).

Nodes were given a fixed-repulsive force and placed randomly in a plane,

and springs with force constants related to the pairwise correlation coefficients
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of the matrix were placed between all nodes. This spring system was allowed

to iteratively reposition nodes in order to reduce the energy of the spring

system, resulting in a final low-energy state, where nodes with high correla-

tions are positioned near one another, and those with weak or no connections

are placed more distantly.

Spring-embedding diagrams were combined with module assignments to

reveal individual node-node interactions, and the relationships of modules to

one another.

SUPPLEMENTAL INFORMATION

Supplemental Information includes two figures (modularity optimization

assignments from Figures 5 and 6 across a broad range of correlation thresh-

olds as well as plots of modularity optimization parameters) and can be found
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