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a b s t r a c t

Anticipating a forthcoming sensory experience facilitates perception for expected stimuli but also
hinders perception for less likely alternatives. Recent neuroimaging studies suggest that expectation
biases arise from feature-level predictions that enhance early sensory representations and facilitate
evidence accumulation for contextually probable stimuli while suppressing alternatives. Reasonably
then, the extent to which prior knowledge biases subsequent sensory processing should depend on the
precision of expectations at the feature level as well as the degree to which expected features match
those of an observed stimulus. In the present study we investigated how these two sources of
uncertainty modulated pre- and post-stimulus bias mechanisms in the drift-diffusion model during a
probabilistic face/house discrimination task. We tested several plausible models of choice bias,
concluding that predictive cues led to a bias in both the starting-point and rate of evidence accumulation
favoring the more probable stimulus category. We further tested the hypotheses that prior bias in the
starting-point was conditional on the feature-level uncertainty of category expectations and that
dynamic bias in the drift-rate was modulated by the match between expected and observed stimulus
features. Starting-point estimates suggested that subjects formed a constant prior bias in favor of the
face category, which exhibits less feature-level variability, that was strengthened or weakened by trial-
wise predictive cues. Furthermore, we found that the gain on face/house evidence was increased for
stimuli with less ambiguous features and that this relationship was enhanced by valid category
expectations. These findings offer new evidence that bridges psychological models of decision-making
with recent predictive coding theories of perception.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Through past experience we are able to improve our internal
model of the world and, consequently, our ability to anticipate,
perceive, and interact with relevant stimuli in our environment.
Indeed, there is a growing body of evidence to suggest that the brain
proactively facilitates perception by constructing feature-level models
or templates of expected stimuli (Clark, 2013; Summerfield & Egner,
2009). Neural correlates of predictive stimulus templates have been
observed in visual (Jiang, Summerfield, & Egner, 2013; Kok, Failing, &
de Lange, 2014; Summerfield et al., 2006; White, Mumford, &
Poldrack, 2012), auditory (Chennu et al., 2013), somatosensory
(Carlsson, Petrovic, Skare, Petersson, & Ingvar, 2000), and olfactory

(Zelano, Mohanty, & Gottfried, 2011) cortex, highlighting feature
prediction as a fundamental property of perception. It follows that
feature-level predictions are compared with incoming sensory signals
to determine a match between the expected and observed inputs.
Thus, the extent to which expectations influence perception should
depend, not only on the prior probability of a stimulus, but also the
predictability of its content as well as the overlap in expected and
observed features. For example, general expectations of encountering
an animal are less informative about the forthcoming sensory experi-
ence than say, expecting to be greeted at the door by a familiar family
pet. In the latter case, the set of predictable sensory features is
constrained in comparison with the limited predictability afforded
by anticipating any animal at all. However, it is presently unclear how
feature-level uncertainty influences the underlying dynamics of per-
ceptual expectation and decision-making.

Behaviorally, prior expectations bias the speed and accuracy of
perception. When incoming sensory information is consistent
with prior knowledge, stimuli are recognized more swiftly and
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with greater precision, whereas performance suffers when prior
beliefs are contradicted by observed evidence (Carpenter &
Williams, 1995; Król & El-Deredy, 2011a, 2011b; Puri & Wojciulik,
2008). Formal theories of perceptual decision-making, such as the
drift-diffusion model, are centered around the assumption that
recognition judgments are produced by sequentially sampling and
accumulating noisy evidence to a decision criterion (Gold &
Shadlen, 2007; Ratcliff, 1978). When no prior information is
available, the distance to the decision criterion is the same for
alternative choices and the rate of evidence accumulation is
determined solely by the strength of the observed signal
(Fig. 1A). However, access to advance knowledge such as the prior
probability of alternative outcomes, may be leveraged to bias
performance in favor of one choice over the other. One strategy
is to preemptively increase the baseline evidence for the expected
choice, reducing the amount of evidence that must be sampled to
reach the corresponding criterion (Fig. 1B, top) (Edwards, 1965;
Link & Heath, 1975; Leite & Ratcliff, 2011; Mulder, Wagenmakers,
Ratcliff, Boekel, & Forstmann, 2012). Alternatively, prior knowl-
edge may be used to dynamically weight incoming evidence,
accelerating evidence accumulation for the more probable out-
come (Fig. 1B, bottom) (Cravo, Rohenkohl, Wyart, & Nobre, 2013;
Diederich & Busemeyer, 2006). Traditionally, baseline and rate
hypotheses have been framed as alternative explanations of decision
bias. However, converging behavioral and neurophysiological evidence
now suggests that expectations may recruit both mechanisms (Bogacz,
Brown, Moehlis, Holmes, & Cohen, 2006; Diederich & Busemeyer,
2006; Hanks, Mazurek, Kiani, Hopp, & Shadlen, 2011; Van
Ravenzwaaij, Mulder, Tuerlinckx, & Wagenmakers, 2012).

While diffusion models have provided valuable insights into the
dynamics of perceptual judgment, they are agnostic about the exact
sources of expectation bias and the stage of information processing at
which prior knowledge is integrated with sensory evidence. Recent
progress has come from tracking neural activity as human and animal
subjects anticipate and categorize noisy perceptual stimuli. These
studies have found compelling evidence that expectations bias sensory
representations both prior to and during evidence accumulation via
recurrent communication between early feature-selection and higher-
order control regions. For instance, human neuroimaging studies have
detected anticipatory signals or “baseline shifts” in sensory regions
that are selective for expected stimuli (Esterman & Yantis, 2010; Kok et
al., 2014; Shulman et al. 1999) as well as enhanced contrast between
early target and distractor representations (Jiang et al., 2013; Kok,

Jehee, & de Lange, 2012). Hierarchical models of perception, such as
predictive coding, propose that these early sensory modulations
represent a feature-level template of the expected stimulus, generated
by top-down inputs from higher-order regions that encode more
abstract predictions (i.e., category probability). The predictive template
is updated to reflect each sample of evidence until uncertainty is
sufficiently minimized and a decision can be made. In the event of a
match, top-down gain is amplified to accelerate evidence accumula-
tion and speed the decision, whereas mismatches are associated with
greater reliance on bottom-up information and slower decision times,
suggesting sensory gain is lowered to allow more evidence to be
sampled (Summerfield & Koechlin, 2008).

Indeed, the neural correlates of perceptual expectations (dis-
cussed above) during pre- and post-stimulus epochs bear a
striking resemblance to the prior and dynamic bias mechanisms
proposed by sequential sampling models. More importantly
though, these findings imply that the influence of prior knowledge
is conditional on the precision at which abstract (i.e., categorical)
expectations are mapped onto incoming evidence at the feature
level. Thus, the effect of prior knowledge on the mechanisms of
decision bias should reflect two critical bits of information –

uncertainty in the features of the expected category as well as
the categorical ambiguity of the observed features. Moreover, each
of these sources of uncertainty is intuitively mapped to a distinct
stage of the decision process, with uncertainty in the expected
features influencing pre-sensory evidence and stimulus ambiguity
affecting post-sensory evidence accumulation. The latter has been
confirmed in a recent study showing that the representational
distance between a stimulus and a discriminant category bound-
ary in feature space could be used to predict RT, and furthermore,
that this relationship could be explained by adjusting the drift-rate
in a sequential sampling model (Carlson, Ritchie, Kriegeskorte,
Durvasula, & Ma, 2013). Compared to stimuli with more ambig-
uous features, located closer to the category boundary, stimuli
represented further away were categorized more rapidly due to a
higher drift-rate on decision evidence (i.e., faster rate of evidence
accumulation). However, it remains unclear how prior knowledge
influences this relationship and how uncertainties in predicted
and observed stimulus features interact during perceptual
decision-making (see Bland and Schaefer (2012) for review).

We investigated these questions by fitting alternative diffusion
models to behavioral data obtained in a probabilistic face/house
discrimination task. Faces and houses were strategically chosen for

Fig. 1. Schematic of Drift-Diffusion Model. (A) The unbiased diffusion model shows two decisions for equal strength “A” (blue) and “B” (red) stimuli. Blue and red dotted lines
mark the reaction time for each choice, equal for “A” and “B” decisions in this scenario. (B) Bias mechanisms. Prior Bias Model (PBM), the starting-point is shifted toward
more probable boundary, decreasing criterion for expected choice (“A”) and increasing criterion for the alternative (“B”). Dynamic Bias Model (DBM), prior probability
increases the slope of accumulation for the expected choice (“A”) and decreases slope for the alternative (“B”).
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several reasons. These categories have been relied upon exten-
sively and continue to be used in behavioral and neuroimaging
studies of perceptual decision-making. Thus, it is of general
interest how basic properties of these stimuli may come to bear
on the decision process and how subtle differences between face
and house categories might affect experimental outcomes. More
importantly, however, faces and houses naturally differ in the
predictability of their exemplars. Faces exemplify a highly homo-
geneous category, all constructed of the same basic features with a
similar spatial layout. Conversely, houses have greater feature-
level and spatial variability, making them less predictable stimuli.
Thus, we predicted that face expectations, which are more precise
at the feature-level, would produce a greater change in the
starting point of decision evidence compared to house expecta-
tions, which involve greater uncertainty at the feature level. In
addition, we quantified the feature-level ambiguity of individual
stimuli, allowing us to further explore the interaction between
prior and present evidence on decision mechanisms. Specifically,
we predicted that less “ambiguous” stimuli (see Section 2) would
be associated with accelerated rates of evidence accumulation
(Carlson et al., 2013) and that this relationship would be strongest
when the stimulus matched the expected category.

2. Methods

2.1. Subjects

Subjects included 25 native English speakers. All subjects reported normal or
corrected-to-normal vision. Two subjects were eliminated from further analysis for
having chance-level performance. The remaining 23 subjects (16 female) ranged in
age from 21 to 27 years (mean age¼23.09). Informed consent was obtained from
all subjects in a manner approved by the Institutional Review Board of the

University of Pittsburgh. Subjects were compensated at a rate of $10 per hour for
their participation.

2.2. Stimuli

Stimuli included 42 neutral-expression face and 43 house grayscale images (85
total), originally measuring 512�512 pixels. Face images were taken from the MacBrain
Face Stimulus Set (courtesy of the MacArthur Foundation Research Network on Early
Experience and Brain Development, Boston, MA). All house stimuli were generated from
locally taken pictures of houses in Pittsburgh, PA. All images were cropped so that only
the face or house was left over a white background. Face and house stimuli were then
normalized, noise-degraded, and converted into movies using the following procedure.
For each image, we generated a two-dimensional, forward discrete Fourier transform
(DFT) using a Fast Fourier Transform (FFT) algorithm in Matlab (2010a, The Mathworks
Inc., Natick, MA). The DFT for each image was then converted into separate phase-angle
and amplitude matrices. The amplitude matrix was averaged across all images within a
category to normalize the contrast, luminance, and brightness of each image in that set.
In order to introduce a controlled level of noise into each image, each individual phase
matrix was filtered with a white Gaussian noise (AWGN) filter, convolving the signal in
the original phase matrix with a specified level of noise to achieve a desired signal-to-
noise ratio (SNR) in the filteredmatrix. An inverse FFT was then applied to the combined
average within-category amplitude matrix and image-specific noise-convolved phase
matrix.

This procedure produced a single still frame of the original image embedded in
a quantifiable level of randomly distributed noise. By repeating this procedure for
each image and concatenating each randomly degraded copy in a sequence, we
were able to produce a dynamic display of noise over the signal (face and house) in
the original image. Visually, this created the appearance of television static over a
stationary object. The image processing procedure was repeated a total of 90 times
per stimulus. All 90 still frames, each containing a unique spatial distribution of
noise, were concatenated at 15 frames per second to produce a movie running 6 s
in length.

Our goal was to identify a common SNR that increased the difficulty of the
discrimination sufficiently in order to encourage subjects to utilize the cues on both
face and house trials. One approach would be to normalize stimuli between
categories based on subject-wise psychophysical assessments, allowing stimuli
from different categories to be equated perceptually. However, psychophysically
matching face and house stimuli could diminish hypothesized category-specific

Fig. 2. Average face and house stimuli, task design, and behavioral data. (A) Average of all original face and house images used to generate noise-degraded movie stimuli.
(B) Behavioral task and probabilistic cues (table) with corresponding face and house prior probabilities. Two cue-stimulus trials are shown. (C) Mean accuracy for face (blue)
and house (red) stimuli. (D) Mean RT in seconds correct face (blue) and house (red) choices. Error bars are the standard error. n.s.¼not significant, npo .05; nnpo .01;
nnnpo .001.
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effects of interest in the current study. A pilot study was conducted in which
subjects made face and house discriminations for stimuli degraded at various noise
levels in order to determine an appropriately challenging noise level. Based on this
study, we chose to include an equal number of 68% and 69% degraded stimuli in
each set, yielding an average noise-level of 68.5% for face and house stimuli. The
decision to include two noise levels was motivated by the following factors:
(1) collapsing across 68% and 69% noise levels produced an error-rate for both
categories that would allow for estimation of error RT distributions in the diffusion
model; (2) including multiple noise-levels in each set served to decrease within-
category sensory reliability which has been shown to promote the use of prior
information during perceptual decision-making (Hanks et al., 2011). All reported
analyses were performed with noise levels collapsed into a single condition.

2.3. Behavioral task

Subjects discriminated between noise-degraded face and house stimuli. Each
discrimination trial was preceded by a cue informing the participant of the
probability that the upcoming stimulus would be a face or house (Fig. 2B). The
cue phase consisted of a screen-centered movie of full noise (�100% noise)
surrounded by a red border. Above the border a number-letter combination was
displayed informing subjects of the prior probability of each category. Subjects
were explicitly informed of the cue prior to beginning the study and received an
explanation of how the cue should be interpreted. For example, a 90F cue indicated
a 90% probability of seeing a face and a 10% probability of seeing a house on the
upcoming trial. The complete list of cues included a 90% and 70% prior for each
category as well as a 50/50 cue indicating a neutral prior (i.e. 90F, 70F, 50/50, 70H,
90H; see Fig. 2B). After 3.0 s, the border turned green to indicate that a trial had
begun and an image was present within the static. Subjects were given 6.0 s to
respond and indicated their choice by pressing one of two buttons. Prior to
beginning the main experiment, subjects were given a chance to practice the task
for a maximum of 15 min or until they were comfortable with the paradigm. In the
main experiment, subjects completed a total of 500 trials, split across five blocks of
100 trials each. Each of the five probabilistic cues was included 100 times,
pseudorandomly distributed across the 500 trials for each participant. Cues were
reliable predictors of the probability of seeing each category on the upcoming trial
(e.g. the 90F cue was followed by a face 90% of the time and a house only 10% of the
time). Stimulus presentation and data collection were programmed in the PsychoPy
software package (Peirce, 2007).

2.4. Comparing faces and houses in feature space

In order to visualize the shared feature-level information within face and house
categories, all face and house images were averaged together to produce a single
“template” stimulus for each category (Fig. 2A). Next, in order to visualize the
feature variability within face and house categories, all stimuli were submitted to a
similarity analysis and projected into a low-dimensional feature space using the
Image Similarity Toolbox in Matlab (Seibert, Leeds, & Tarr, 2012). The similarity
between each pair of images was derived by overlaying the images and summing
the squared difference of their pixel values. Classical Multi-Dimensional Scaling
(MDS) analysis (Seber, 2009) was then performed on the similarity matrix to
visualize face and house stimuli in a two-dimensional coordinate plane. Plotting
each stimulus exemplar according to its MDS coordinates provided a useful visual
representation of the feature variability within each category as well as the
difference in feature-reliability between categories (Fig. 3A).

Subsequently, a linear discriminant analysis (LDA) was performed using the
Scikit-Learn package in Python (Pedregosa et al., 2011) to find the optimal linear
boundary separating face and house stimuli in the MDS coordinate plane. The
linear boundary may be conceptualized as a decision boundary between face and
house categories, similar to the decision criterion in classic signal detection theory.
The Euclidean distance from each exemplar stimulus to the category boundary,
hereafter referred to as the representational distance, thus provides an index of its
discriminability from the opposing category.

Previous studies have shown that representational distance is a reliable
predictor of decision speed, where stimuli further from the category boundary
are associated with faster response times (Carlson et al., 2013). We first sought to
replicate this finding using a similar procedure to that found in Carlson et al. (2013),
calculating the Spearman's rank order correlation between the distance to category
boundary and the mean RT for each stimulus exemplar. Note that in Carlson et al.
(2013), feature reductionwas performed on functional magnetic resonance imaging
(fMRI) data indexing the neural response to individual stimulus exemplars in
primary visual and inferotemporal cortex. However, in the present study, feature-
reduction is performed on the stimuli themselves.

All exemplar RTs were normalized to eliminate subject-level differences.
Correlations were first calculated for face and house stimuli collapsing across
cue-type to determine a main effect of representational distance on RT. Subse-
quently, the mean exemplar RTs were split by cue-type, collapsing 70% and 90%
predictive cues into a single variable for face and house categories to ensure
adequate trial counts per condition. This allowed us to investigate how the
cued expectation of a face or house modulated the relationship between

representational distance and RT. Finally, representational distance was included
as a regressor in diffusion model fits to evaluate how drift-rate was affected by the
interaction between probabilistic cues and categorical ambiguity (see below).

2.5. Hierarchical Drift-Diffusion Model

In the full Ratcliff Drift-Diffusion Model (Ratcliff & McKoon, 2008) (hereafter,
the diffusion model), evidence is stochastically accumulated in a single decision-
variable (DV) from a predetermined starting-point z, located at some point
between two decision boundaries, separated by a distance a. As evidence is
sampled, the DV drifts toward the boundary supported by the signal at an average
rate of v, called the drift-rate, with a variance η, reflecting the intratrial noise in the
system. In addition, the model parameterizes non-decision time ter to account for
non-decision related sensory and motor processing, as well as intertrial variability
in drift-rate sv, starting-point sz, and non-decision time st parameter. Evidence
accumulation is terminated once the DV reaches one of the two criterion
boundaries, initiating the corresponding choice and marking the response time
(RT). Traditionally, the effects of prior knowledge have been modeled as a bias in
the baseline or starting-point, referred to here as the prior bias model (PBM; Fig. 1B,
top), or alternatively, as a bias in the rate of evidence accumulation, referred to here
as the dynamic bias model (DBM; Fig. 1B, bottom). In a recent study, predictive cues
led subjects to bias both of these mechanisms, shifting the starting-point closer to
the more probable boundary and increasing the drift-rate for that category (Van
Ravenzwaaij et al., 2012). We refer to this model as the multi-stage model (MSM).

Diffusion models were fit to choice and RT data using HDDM (Wiecki, Sofer, &
Frank, 2013), an open source python package for hierarchical Bayesian estimation
of drift-diffusion model parameters. Here, the term hierarchical means that group-
and individual subject-level parameters are estimated simultaneously, such that
group-level parameters form the prior distributions from which individual subject
estimates are sampled. A recent study comparing HDDM with alternative estima-
tion approaches showed that hierarchical fitting requires fewer observations (i.e.,
experimental trials) to recover parameters and is less susceptible to outlier subjects
than traditional methods (Wiecki et al., 2013). More details regarding hierarchical
Bayesian models and model fitting procedures can be found in Supplementary
materials.

All model parameters were estimated using three Markov Chain Monte-Carlo
(MCMC) chains of 5 K samples each with 1 K burn-in samples to allow the chain to
stabilize. The three chains were used to calculate the Gelman–Rubin convergence
statistic for all model parameters. For all model parameters, this statistic was close
to 1 (7 .01), suggesting that 5 K samples was sufficient for MCMC chains to
converge. Models were response coded with face responses terminating at the
upper decision boundary and house responses at the bottom. This allowed for
meaningful interpretation of bias in the starting-point parameter, where a shift
upward or downward from ½a corresponded to a face or house bias, respectively.
Separate drift-rates were estimated for face and house stimuli such that a positive
drift produced a face response and negative drift produced a house response.

We compared four hypothetical models of choice bias differentiated by which
parameter or set of parameters was free to vary across probabilistic face/house cues. All
models contained single group-level estimates of the intertrial variability in the drift-
rate, starting-point, and non-decision time. In addition, all models included a single
estimate for boundary separation and non-decision time at the subject level, para-
meterized by their respective group-level means and standard deviations. For each
subject in the hierarchical PBM, separate starting-points were estimated for each of the
five cues. In the DBM, separate face and house drift-rates were estimated for each of the
five cues. We fit two versions of this model to the data: the DBM, in which starting-
point was fixed at ½a, and the DBMþ , in which the starting-point was estimated from
the data. Finally, the MSM can be viewed as a combination of the PBM and DBM.
Separate starting-points, face drift-rates, and house drift-rates were estimated for each
of the five cues. A summary of the parameters included in each model and their
dependencies is given in Table 1.

To ensure that model selection was not biased by the coding conventions
described above, we refit each of the four models using an alternative coding
scheme in which biases in starting-point and/or drift-rate were estimated relative
the value under the neutral condition (see Supplementary materials for more
information). These models fit the data following the same rank order as the
models explained above, confirming that model selection was not biased by the
coding conventions described above. The remainder of the paper refers to the
models explained above, as the alternative coding convention was not well suited
for assessing category specific effects of interest on bias parameters (see
Supplementary materials for more detailed explanation).

Finally, the best-fitting model was re-fit to the data including representational
distance as a regressor on the drift-rate parameter for each stimulus category for each
cue type, collapsed into face, house, and neutral cues (see Wiecki et al. (2013) for
details). Specifically, the model assumed that the effect of cue type on face and house
drift-rates was also dependent on the trial-wise representational distance or feature-
level “ambiguity” of the observed stimulus. Note that this model was not included in the
model comparison and selection process but was fit post-hoc to determine an
interaction between representational distance and cue-type on drift-rate using the
framework of the best-fitting model.
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2.6. Model comparison and hypothesis testing

Several methods, both quantitative and qualitative, were used to contrast alternative
diffusion models. Because comparisons involved models of varying complexity, we used
Deviance Information Criterion (DIC) to evaluate model performance. The DIC is a
measure of model deviance (i.e. lack-of-fit) that is further penalized by the effective
number of parameters used to fit the model to the data (Spiegelhalter, Best, Carlin, &
Linde, 1998); thus, models with lower DIC values are favored. Conventionally, a

difference of 10 or greater between model DIC scores is interpreted as significant and
the model with the lower score is declared the best-fit model (Burnham & Anderson,
2002; Zhang & Rowe, 2014). DIC was chosen for model comparison as it is more
appropriate for comparing hierarchical models than other more commonly used
criterion measures such as Akaike information criterion (AIC) or Bayesian information
criterion (BIC) (Spiegelhalter et al., 1998). Because diffusion models were fit hierarchi-
cally rather than individually for each subject, a single DIC value is calculated for each
model which reflects the overall fit to the data at the subject and group levels.

Another aimwas to assess how well alternative models qualitatively fit the data. To
explore this, simulations were run using parameters estimated in each model to
generate theoretical data sets for comparison with the empirical data. For qualitative
comparisons, we re-fit each model to single-subject data in order to generate subject-
level parameters that were not influenced by the group-level trends, as is the case in the
hierarchical model. For each of the four models (i.e., the PBM, DBM, DBMþ , and MSM),
each individual subject's parameters were used to simulate 100 theoretical datasets,
each including the same trial counts per condition as individual experimental datasets.
For each of the 100 simulated datasets, subject-wise mean RT (correct only) and
accuracy were calculated for each cue-stimulus condition and averaged for comparison
with the corresponding empirical estimates.

For the best-fit model, we performed follow-up contrasts to test whether the
hypothesized bias parameters systematically and reliably changed across probabil-
istic cues. Contrasts were performed by subtracting the posterior estimated under
the neutral condition (i.e., 50/50 cue) from the posterior under each predictive cue
condition (i.e., 90H, 70H, 70F, and 90F cues) for each bias parameter in the model
(i.e., μvH, μvF, μz). This yielded a probability density over the difference of means for
the two conditions. For each posterior difference, we estimated the 95% credible
interval for the distribution and also the probability mass on each side of the zero
value for testing one-tailed hypotheses. For instance, the one-tailed hypothesis that
a parameter value is expressly increased from condition A to condition B with a
probability of at least 95% may be tested by estimating the probability mass to the
right of zero for the posterior difference μB�μA. The hypothesis is supported if the
positive probability mass meets the significance criterion and is rejected otherwise.

Table 1
Description of diffusion model parameters and parameter dependencies. Parameter
dependencies (�, –, S, C) for all group- and subject-level parameters (rows) are
listed for each of the four hierarchical models (columns). �, free parameter with no
dependencies; –, fixed parameter; S, parameter dependency on stimulus category
(e.g. group and subject level parameters estimated separately for face and house
stimuli); C, parameter dependency on cue type (e.g. group and subject level
parameters estimated for all five cue types).

Parameters Models

Group Subject PBM DBM DBMþ MSM

μa, σa ai � � � �
μv, σv vi S S, C S, C S, C
μt, σt teri � � � �
μz, σz zi C – � C
sv � � � �
st � � � �
sz � � � �

Fig. 3. Multidimensional scaling (MDS) and correlation of face/house representational distance with response time. (A) face (blue dots) and house (red dots) stimuli
projected into two-dimensional feature-space based on classic MDS. Average face and house stimuli are plotted as black circles surrounded by a blue and red ring,
respectively. Category boundary estimated by linear discriminant analysis is shown as a black line separating face and house stimuli. The LDA boundary correctly
classified 100% of face stimuli and 93% of house stimuli. (B) Mean RT plotted as a function of the representational distance of individual face (blue) and house (red)
stimuli. Correlation lines are shown for all stimuli (black), face (blue), and house (red) stimuli. (C) Heatmap and correlation coefficients for representational distance
and RT for face (bottom row) and house (top row) stimuli across cue type (columns). npo .05; nnpo .01; nnnpo .001.
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2.7. Behavioral data analysis

Fast response outliers were removed from the data for each subject using the
exponentially weighted moving average (EWMA) algorithm packaged in D-MAT, an
open source Matlab toolbox for fitting diffusion models (Vandekerckhove & Tuerlinckx,
2007). In total, 1.56% of trials were eliminated based on subject-specific EWMA
estimates. Mean RT (correct trials only) and accuracy measures were analyzed
separately using a 2 (stimulus: face and house)�5 (cue: 90H, 70H, 50/50, 70F, and
90F) repeated-measures ANOVA model. Finally, a one-way repeated measures ANOVA
was run within face and house categories separately to test the simple effect of
probabilistic cues on RT and accuracy. All analyses revealed that the data significantly
violated the sphericity assumption. Thus, Greenhouse–Geisser corrected results are
reported for both measures. All pairwise comparisons reported are corrected for
multiple comparisons using a Sidak HDR correction.

3. Results

3.1. Behavioral results

Patterns of accuracy (Fig. 2C) and RT (Fig. 2D) confirmed that
subjects biased performance in favor of the cue-predicted cate-
gory. We observed a significant main effect of stimulus on RT, F(1,
22)¼191.53, po .001, but not choice accuracy, F(1, 22)¼2.44,
p¼ .13. There was a significant main effect of cue on RT, F(4,
58.03)¼8.08, po .001, and accuracy, F(4, 72.1)¼10.14, po .001.
Importantly, analyses revealed a significant interactive effect of
stimulus category and cue on RT, F(2.18, 47.95)¼9.66, po .001, as
well as accuracy, F(1.53, 33.61)¼31.96, po .001, indicating that
responses on face and house trials were differentially modulated
by the cue predictions. Consistent with our predictions, post-hoc
contrasts revealed significantly higher accuracy for the more
probable stimulus category on trials following a non-neutral
probabilistic cue (Fig. 2C; all po .001) but no reliable difference
between categories under the neutral condition, t(22)¼1.18,
p¼ .25. Conversely, analysis of RT revealed that face responses
were reliably faster than house responses regardless of the
preceding cue (Fig. 2D; all po .001).

To further explore how probabilistic cueing affected face/house
decisions we examined the effect of predictive cues on choice
accuracy within each category separately. Accuracy increased with
prior probability for both face, F(4, 30.85)¼14.53, po .001, and
house, F(4,30.85)¼32.84, po .001, stimuli. However, pairwise
comparisons revealed that while valid predictive cues increased
choice accuracy similarly for face and house stimuli, invalid face
but not house cues had diminishing effects on the accuracy for the
opposing category. This finding suggests that house predictions
had a weaker effect on the final decision outcome than face
predictions, supporting our hypothesis that the salience of prior
information is proportional to the feature-level predictability of
the stimulus.

Within-category analysis of the cue effect on RT (see Fig. 2D)
revealed that marginally and highly predictive cues reliably
increased the speed of house responses (both po .001). Face RT
was comparatively less sensitive to cueing, showing a significant
advantage in the 70F but not 90F cue condition relative to neutral.
In contrast with accuracy, RT was not reliably affected by invalid
cues in either face or house categories relative to the neutral cue
condition (all p4 .05).

3.2. Representational distance and response time

Another goal was to assess how representational distance of
individual stimuli affected decision performance. Specifically, we
examined the relationship between RT and the distance from the
face/house category boundary for individual exemplars (see
Section 2). Fig. 3B shows a significant linear decrease in RT for
face and house stimuli with increasing distance from the category

boundary. In other words, stimuli with less ambiguous features are
categorized more rapidly. Critically, when exemplar RTs were split
by cue type, the negative correlation between representational
distance and RT only remained significant for trials in which the
cue was a valid predictor of the stimulus category (Fig. 3C). Indeed,
this outcome is consistent with the notion that the rate at which
feature-level evidence is integrated towards a decision depends on
the match between expected and observed evidence.

3.3. Diffusion model comparison

We next tested whether face/house expectations lead to (1) a
prior bias in the starting-point (i.e., PBM), (2) a dynamic bias in the
rate of evidence accumulation with the starting-point fixed at the
unbiased position (i.e., DBM), (3) a dynamic bias in the rate of
evidence accumulation with a free starting-point parameter (i.e.,
DBMþ), or (4) a bias in both the starting-point and accumulation
rate (i.e., MSM). Based on estimated DIC values for each model (see
Table 2), the MSM provided the best account of face and house
biases across probabilistic cues. Because the DIC score for the MSM
is lower than all other models' by at least 10 (Burnham & Anderson,
2002), this suggests the MSM provided a sufficiently better fit to the
data than competing models to justify its greater complexity.

In addition to ranking models by their estimated DIC scores, we
evaluated the performance of each model by how well it recovered
empirical accuracy (Fig. 4, top row) and RT means across condi-
tions (Fig. 4, bottom row). Simulations from the PBM (Fig. 4A)
displayed reasonable fits to observed RT means but failed to
capture basic experimental effects on choice accuracy. In contrast,
simulations from the DBM (Fig. 4B) provided close fits to accuracy
means but were less successful at recovering RT means, falling
outside two standard errors of the empirical mean under all but a
few conditions. Simulations from the DBMþ (Fig. 4C) and MSM
(Fig. 4D) provided similarly adequate fits to both RT and accuracy
means. Ultimately, however, the MSM simulations produced closer
fits to the data, falling within two standard errors of the observed
mean accuracy under all but one condition and mean RT under all
but two conditions. In sum, the MSM provided the best fit to
observed data, in both complexity-penalized DIC rankings and
qualitative model comparisons.

3.4. Face/house bias parameters in the MSM

Next, we examined how probabilistic cues affected bias para-
meters for face and house stimuli. Mean parameter estimates for
all four hierarchical models may be found in Table 3; however, the
following sections focus exclusively on parameter estimates from
the best-fit model, or MSM. Posterior probability distributions
of starting-point (Fig. 5A), face drift-rate (Fig. 5B), and house

Table 2
Penalized model fit statistics for competing diffusion models. PBM: starting-point
estimated across probabilistic cues. DBM: both face and house drift-rate para-
meters estimated across probabilistic cues. DBMþ: both face and house drift-rate
parameters estimated across probabilistic cues with free starting-point parameter.
MSM: starting-point and face and house drift-rate parameters estimated across
probabilistic cues. D , the expected deviance score for each model that measures
lack of fit between the model and the data. pD, the effective number of parameters
used to fit the model. DIC, deviance information criterion summarizes each model
as a combination of its (lack of) fit to the data and its complexity, DIC¼ DþpD.
Thus, the model with the lowest DIC score is favored over alternatives.

Model D pD DIC

PBM 35,459.62 151.65 35,611.28
DBM 35,863.31 210.68 36,073.99
DBMþ 35,358.03 219.15 35,577.18
MSM 35,295.95 257.01 35,552.96
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drift-rate (Fig. 5C) estimates revealed systematic effects across
probabilistic cues. As expected, face and house predictive cues
shifted the starting-point closer to the more probable choice
boundary compared to the neutral condition, higher for faces
and lower for houses (Fig. 5A). However, although starting-point
estimates displayed the expected pattern across face and house
cues, the absolute estimates fell closer to the face than the house
boundary under all cue conditions (all zcue4½a). On valid cue
trials, face (Fig. 5B; 70F: light blue, 90F: blue) and house (Fig. 5C;
70H: light red, 90H: red) drift-rates were accelerated relative to
neutral. However, invalid cues had distinct effects on face and
house drift-rates. House drift-rates on trials following a face cue
(Fig. 5C; 70F: light blue, 90F: blue) were shifted closer to zero from
the neutral cue distribution, suggesting face cues suppressed the
rate of house evidence accumulation (Fig. 5C; 70F: light blue, 90F:
blue). In contrast, face drift-rates on trials following a house cue
(Fig. 5B; 70H: light red, 90H: red) showed substantial overlap with
the neutral cue estimates, suggesting that house cues did not
suppress the rate of face evidence accumulation.

To evaluate the significance of these effects, we performed
statistical contrasts comparing posterior estimates under each
predictive cue condition with the corresponding parameter's esti-
mate under the neutral cue condition (see Model Comparison and
Hypothesis Testing in Section 2). Fig. 6 shows the contrast distribu-
tions with in-figure inferential statistics for each comparison.

Starting-point estimates under the 90H (Fig. 6A, left) and 70H
(Fig. 6A, middle-left) cue conditions were significantly closer to the
house boundary (i.e., lower) than under the neutral cue condition.
Neither 90F (Fig. 6A, right) or 70F (Fig. 6A, middle-right) starting-
points were significantly closer to the face boundary than under the
neutral cue condition; however, both were significantly higher than
starting-points under the house cue conditions as well as when
compared to the unbiased starting-point in the model (z¼½a). As
noted above, face drift-rates were significantly faster following face
predictive cues (Fig. 6B, right panels) and were unaffected by house
predictive cues (Fig. 6B, left panels) relative to the neutral cue
condition. Also reinforcing our interpretations above, house drift-
rates were significantly faster following house predictive cues
(Fig. 6C, left panels) and slower following face predictive cues
(Fig. 6C, right panels) compared to neutral. Interestingly, between-
category comparisons of drift-rate across cues indicated that the
drift-rate for house stimuli was significantly higher than that for
faces under the neutral condition (see Fig. 5D). We propose an
explanation for this unexpected outcome in Section 4.

3.5. Drift-rate bias determined by match between expected/observed
features

Finally, we investigated the interaction between prior knowl-
edge and representational distance on the drift-rate for face and

Fig. 4. Qualitative comparisons between empirical behavioral measures and model-simulated predictions. For each hierarchical model, (A) PBM, (B) DBM, (C) DBMþ , and
(D) MSM, the model-predicted average accuracy (top) and RT (bottom) for face (transparent blue) and house (transparent red) stimuli are overlaid against empirical averages
(solid lines).

Table 3
Mean posterior parameter estimates for competing diffusion models. Posterior means computed for each parameter (columns) in all four diffusion models (rows).
Parameters included in all models are boundary separation (a), non-decision time (ter), inter-trial variability in the drift-rate (sv), starting-point (sz), and non-decision time
(st). Single face (vF) and house (vH) drift-rate estimates are given for the PBM. A single starting-point (z) is given for the DBM and DBMþ models, fixed by experimenters in
the DBM and estimated from the data in the DBMþ . For models including a bias in the starting-point (i.e., PBM and MSM), starting-points are given for each of the predictive
cues (z90H, z70H, z70F, and z90F) and the neutral cue (zn). For models including a bias in the drift-rate (i.e., DBM, DBMþ , and MSM), drift-rates are given for each of the
predictive cues (v90H, v70H, v70F, and v90F) and the neutral cue (vn), split into separate rows for face (F) and house (H) stimuli. Blank cells (–) are due to differences in each
model's designated bias parameter(s).

Model a ter sv sz st vF vH z z90H z70H zN z70F z90F v90H v70H vN v70F v90F

PBM 3.21 .85 .18 .03 .91 .75 � .80 – .52 .52 .59 .67 .67 – – – – –

DBM 3.37 .69 .26 .03 .73 – – .50 – – – – – F .81 .73 .83 1.19 1.15
H � .81 � .80 � .61 � .43 � .27

DBMþ 3.37 .75 .28 .03 .79 – – .59 – – – – – F .63 .56 .65 1.01 .97
H �1.0 � .99 � .78 � .58 � .42

MSM 3.30 .79 .23 .03 .83 – – – .56 .56 .60 .62 .63 F .69 .61 .62 .92 .87
H � .93 � .92 � .78 � .62 � .45
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house stimuli. This was achieved by refitting a version of the MSM
to the data in which representational distance was included as a
regressor on the face and house drift-rates under each cue
condition (collapsed into face cue, neutral cue, and house cue
types). Fig. 7 shows the absolute beta weights for representational
distance on face and house drift-rates for each of the three cue
types. 2 (stimulus: face and house)�3 (cue type: house, neutral
and face) repeated-measures ANOVA was performed to evaluate
the reliability of mean differences in the effect of representational
distance on the drift-rate parameter. We observed a significant
interaction between stimulus and cue-type F(1.37, 30.10)¼96.53,
po .0001, suggesting that the effect of representational distance
on face and house drift-rates was conditional on the validity of
prior expectations. Pairwise comparisons revealed that, relative to
the neutral condition, valid cues significantly increased the posi-
tive effect of distance on the drift-rate for both face, t(22)¼10.30,
po .001, and house, t(22)¼20.20, po .001. The mean difference
observed between categories was not significant under the neutral
cue condition or when the cue was a valid predictor of the
stimulus category (both p4 .05), suggesting that representational
distance affected face and house drift-rates similarly across
cue types.

4. Discussion

Recent neuroimaging studies have found that prior expecta-
tions about a future sensory experience are projected into sensory
space as feature-level stimulus templates. Further evidence sug-
gests that these templates are updated dynamically according to
the match between the predicted and observed sensory inputs
(Rahnev, Lau, & de Lange, 2011; Summerfield & Koechlin, 2008).
Here, we sought to bridge these findings with the widely held
belief that perceptual decisions are produced by sequentially

sampling evidence to a decision threshold, modeled as a bounded
drift-diffusion process. First, we showed that cued expectations of
face and house stimuli led to a prior bias in the starting-point as
well as a dynamic bias in the drift-rate. Next, we confirmed our
hypothesis that face expectations, which are more reliable than
house expectations at feature-level, would have a more salient
affect on pre-sensory evidence in the starting-point. Finally, we
showed that RTs were faster for less ambiguous stimuli in the
context of valid expectations and that this relationship could be
explained by an interaction between stimulus ambiguity and
expectation validity on the drift-rate of face/house evidence. These
findings complement recently proposed predictive coding the-
ories, suggesting that the effects of expectation on perception
depend on the precision at which abstract prior knowledge is
translated into feature-space and mapped onto observed evidence.

4.1. Multi-stage model of decision bias

Previous studies, both behavioral and neurophysiological, have
produced mixed findings regarding the mechanism(s) by which
prior expectations bias decision outcomes. For instance, there is
evidence that prior expectations decrease the distance to thresh-
old for the more likely choice (Edwards, 1965), for instance, by
priming relevant feature-selective sensory neurons (Kok et al.,
2014; Shulman et al., 1999). However, conflicting reports have
suggested that top-down signals serve to increase the rate of
evidence accumulation for a particular choice (Diederich &
Busemeyer, 2006), for instance, by improving the quality of signal
read-out from competing pools of sensory neurons (Cravo et al.,
2013). Not until more recently has it been considered that
expectations might influence these mechanisms in conjunction
(Hanks et al., 2011; Leite & Ratcliff, 2011; Van Ravenzwaaij et al.,
2012). The results of the diffusion model analysis in the current
study support this hypothesis, showing that subjects incorporated

Fig. 5. Mean starting-point and drift-rate posterior distributions from MSM across prior probability cues. Distributions show the posterior probability of mean (A) starting-
point, (B) face drift-rate, and (C) house drift-rate under each probabilistic cue condition. (D) Contrast of posterior face and house drift-rate estimates under the neutral cue
(i.e., 50/50) condition, showing a significantly higher house than face drift-rate (vertical dotted lines show the 95% credible interval of the difference).
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probabilistic face/house cues by modulating both the starting-
point and rate of evidence accumulation. We termed this the
multi-stage model (MSM) to denote that a change in the starting-
point implies a prior bias during pre-stimulus processing, whereas
a bias in the drift-rate implies a dynamic bias in the treatment of
post-stimulus sensory evidence.

We are not the first to report an effect of prediction on both
prior and dynamic bias mechanisms. Earlier studies have found
that predictive knowledge (i.e. prior probability) biases both
mechanisms, but only when there is additional uncertainty in
the quality of sensory information across trials (Hanks et al., 2011;
Leite & Ratcliff, 2011). However, this claim is challenged by a recent
study showing that human subjects incorporate prior knowledge
in both mechanisms across fixed and variable difficulty trials (Van
Ravenzwaaij et al., 2012). Nevertheless, this may explain why both
starting-point and drift-rate biases were necessary to explain

expectation effects in the current study, as sensory evidence was
more reliable in the face than the house category. Although, we
cannot rule out the possibility that subjects would have invoked
the same strategy on a similar cued prediction task with percep-
tually matched alternatives (see Van Ravenzwaaij et al. (2012)).
Additional research will be required to understand the conditions
under which prior knowledge is integrated during pre- versus
post-sensory epochs of the decision process.

4.2. Category-specific effects of expectation

Category-specific effects of expectation emerged at several levels of
analysis, including standard analyses of choice speed and accuracy as
well as in fits to the diffusion model. For instance, valid predictive cues
increased accuracy equivalently for faces and houses, whereas invalid
cues impaired choice accuracy on house but not face trials. This is

Fig. 6. Posterior contrasts of MSM bias parameters between probabilistic and neutral cue conditions. Distributions are the difference between posterior estimates under each
probabilistic cue condition with the corresponding posterior estimates under the neutral cue (i.e. 50/50) condition for (A) starting-point, (B) face drift-rate, and (C) house
drift-rate. In-figure text contains the mean and 95% credible interval (visualized as dotted lines) for each contrast distribution in addition to the proportion of the distribution
that falls to the left and right of the zero value. Significant contrasts are marked by distributions in which 95% or more of the probability mass falls to one side of zero.
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equivalent to saying face cues simultaneously increased the face hits
(i.e., see face, report “face”) and face false-alarms (see house, report
“face”) whereas house cues only increased house hits. Computational
models have shown that a concurrent increase in hit and false-alarm
rates in the context of probabilistic expectations implies an increase in
the baseline activity of feature-selective sensory units (Wyart, Nobre, &
Summerfield, 2012). Indeed, this explanation is in line with diffusion-
model analyses in the current study. Specifically, face expectations
materialized as an explicit increase in the baseline level of face
evidence whereas house expectations only served to reduce the
magnitude of prior face bias. In other words, house cues moved the
starting-point closer to but never below the neutral position.

Assuming the starting-point reflects the strength of a predic-
tion template, one interpretation of this implicit prior face bias is
that subjects performed the task using face detection strategy.
That is, rather than accumulating the difference between face and
house evidence, the decision was made by comparing each sample
of evidence with a face template and accumulated as “face” or “not
face”. Indeed, previous studies involving face/house decisions have
come to similar conclusions, noting that category-specific effects
in behavioral and fMRI data could be explained if subjects used
such a strategy (Summerfield, Egner, Mangels, & Hirsch, 2006). A
face detection strategy is an appealing interpretation of the lack of
prior house bias in the present study as this may further explain
the counterintuitive finding that the drift-rate was larger for
houses than faces when the cue contained no predictive informa-
tion (e.g., 50/50 cue). In this scenario, house drift is driven by two
“not-face” signals in the stimulus, one from the house image and
the other from the noise introduced by the stimulus degradation
procedure. Thus, contrasting the sum of house and noise signals
with a face template would lead to an accelerated drift toward the
house, or “not-face”, boundary.

However, that subjects exclusively used a face-detection strat-
egy to perform the task does not fully agree with other findings in
the present study. For instance, we found that representational
distance accelerated the drift-rate on decision evidence and that
this effect was strongest on valid cue trials for both face and house
categories. In accordance with hierarchical models of perception
(i.e. predictive coding), our interpretation of this effect assumes
that the increase in drift gain is specifically due to the match
between an already formed prediction template and the features
in the observed stimulus. According to this view, a prior house
template would need to be present in order for valid house cues to
actively facilitate the distance-mediated increase in drift-rate.

One possibility is that the observed patterns in the starting-point
are a reflection of concurrent top-downmodulation in face and house-
selective regions or local competition between regions. For instance,
both the implicit face bias and trial-wise cue dependencies in the
starting point could be produced by simultaneously priming feature-
selection for faces and houses in proportion to their respective feature-
level reliability, scaled by their prior probability. Moreover, a local
competition between face and house representations fits with the
combined observations that face but not house cues shifted the
starting-point closer to the more probable boundary and subsequently
suppressed the rate of evidence accumulation for the alternative
choice. However, in the drift-diffusion model, starting-point and
drift-rate parameters represent the difference in evidence for alter-
native choices prior to and during evidence accumulation, respectively.
Thus, it is unclear from the present study how sources of face and
house evidence were individually modulated by predictive cues.
Indeed, similar questions have arisen in previous studies regarding
the mechanisms of top-down control, the precision by which higher-
order regions target evolving sensory representations (De Gardelle,
Waszczuk, Egner, & Summerfield, 2013; Kveraga, Ghuman, & Bar,
2007; Kok et al., 2012), and the local interactions between competing
populations of sensory neurons during decision-making (Alink,
Schwiedrzik, Kohler, Singer, & Muckli, 2010; Desimone, 1998;
Kastner & Ungerleider, 2001). We believe that future investigations
of these phenomena will provide a much-needed clarity to the
ongoing study of perception and decision-making.

4.3. Merging theories of mind and brain

One of the current challenges in cognitive neuroscience is to
develop formal theories that apply to multiple scales of observation,
from single-unit neural activity to its consequences at the behavioral
level. The diffusion model is somewhat unique in this respect.
Originally developed as a cognitive process model, it has since been
successfully used to explain patterns of neural integration in frontal
and parietal cortex. For instance, single neurons in the lateral
intraparietal area (LIP) and frontal eye fields (FEF) of the macaque
have been shown to accumulate evidence about motion direction
(Gold & Shadlen, 2007). These neurons accelerate their firing at a rate
proportional to the motion coherence in a random dot stimulus until
reaching a set threshold at decision time and returning to baseline. In
addition, human neuroimaging studies have localized patterns of
evidence accumulation in the dorsolateral prefrontal cortex (dlPFC)
(Bowman, Kording, & Gottfried, 2012; Heekeren, Marrett, Bandettini, &
Ungerleider, 2004; Ploran et al., 2007; Philiastides, Auksztulewicz,
Heekeren, & Blankenburg, 2011; Ploran, Tremel, Nelson, & Wheeler,
2011). However, due in part to the generality and simple assumptions
of the diffusion model, it has proven more challenging to characterize
the neural implementation of other proposed decision mechanisms,
such as those that mediate decision bias. Thus, it remains contentious
as to whether a direct mapping exists between bias parameters in the
diffusion model and the neural mechanisms of expectation (see Simen
(2012) for discussion).

In contrast with the phenomenological nature of sequential
sampling models, cortical feedback theories such as predictive coding
make more precise predictions about the neural implementation of
perceptual expectations (Friston, 2005; Spratling, 2008). Predictive
coding posits that expectations are generated hierarchically in a top-
down manner, becoming less abstract at lower levels of representa-
tion. Incoming sensory information is evaluated against the lowest-
level stimulus template, producing a feedforward prediction error
signal that is used to update beliefs about the cause of sensation until
error is sufficiently explained away. It is currently not well under-
stood how diffusion model parameters map onto the mechanisms
proposed by predictive coding, or even if these two frameworks are

Fig. 7. Effect of stimulus representational distance on drift-rate. A second version
of the MSM was fit to the data including representational distance as a regressor on
the drift-rate parameter. The regression coefficient for representational distance on
face (blue) and house (red) trials is shown for each of the cue types (on the x-axis).
In this version of the MSM, cues were collapsed into three types: face cue, neutral
cue, and house cue. Error bars are the standard error. n.s.¼not significant, npo .05;
nnpo .01; nnnpo .001. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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compatible with one another (see Hesselmann, Sadaghiani, Friston,
and Kleinschmidt (2010)).

While the current study does not conclusively answer this
question, the results of our diffusion model analysis appear
consistent with many assumptions of predictive coding. For
instance, predictive coding assumes that prior knowledge affects
sensory representations both prior to and during stimulation, in
agreement with our finding that modulation in both the starting-
point and drift-rate was required to explain cued expectation
biases. In addition, cued expectations differentially affected deci-
sion dynamics for face and house stimuli, suggesting that expecta-
tion bias occurred at the level of stimulus representation, as
opposed to domain-general evidence accumulation. Specifically,
face but not house expectations manifested as overt increases in
the baseline evidence for that category. This finding, in particular,
lends itself to a predictive coding interpretation because of the
relative predictability of face and house stimuli and the central
role precision plays in predictive coding. That is, more precise (i.e.,
face) predictions should have greater influence on pre-stimulus
sensory representations (i.e., strong priming of target-selective
neurons and/or inhibition of distractor neurons), consistent with
observed biases in the starting-point parameter. Finally, we found
compelling evidence that prior expectations conditionally
enhanced the effect of representational distance on response
speed by increasing the gain on evidence accumulation when
the stimulus matched the expected category.

5. Conclusions

In conclusion, we showed that expectations bias decisions by
modulating both the prior baseline and dynamic rate of evidence
accumulation. Moreover, we found that predictive information
exerted a greater bias in the baseline evidence for the more
reliably predictable (i.e. face) category and that the rate of
evidence accumulation was specifically modulated by the match
between expected and observed sensory features. This study
contributes to a growing body of literature on the dynamics of
prediction and perceptual decision-making, demonstrating that
the extent to which expectations bias perception hinges on the
ability to transform abstract prior knowledge into precise feature-
level predictions.
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