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Remembering the location of a parked car or reminisc-
ing about a recently attended symphony event are both
perceptions of the past that often include rich sensory
and contextual details of the original episode. For much
of the past century, remembering was considered taboo
for scientific exploration because of unease about
exploring subjective phenomena. Progress in cognitive
psychology, neuropsychology and, more recently, brain-
imaging research, has provided experimental tools for
the objective investigation of remembering, and provid-
ed a means to link cognitive-level description with
underlying neural processes. Recent findings indicate
that acts of remembering separate into component
processes that are subserved by dissociable brain regions.
In this review, we consider evidence for these separate
neural components and how they might combine to
orchestrate an act of remembering. Our discussion is
framed in terms of the strategic aspects of attempting to
remember and the products of a memory attempt (for
more expansive models of retrieval, see REFS 1–9).

Retrieval attempt
A familiar face or scene might spontaneously trigger a
memory, but most acts of remembering begin with a
goal-directed attempt to remember. How does the brain

support the processes associated with retrieval
attempts? Clues have come from studies of patients
with brain lesions. Patients with frontal cortical lesions
often show retrieval difficulties, in particular when the
specific context (or source) of an episode must be
remembered or when minimal cues are provided to aid
retrieval7,10–17. Gershberg and Shimamaura10, for exam-
ple, asked patients with frontal lesions repeatedly to
study and recall lists of words or pictures, and found
that the patients were significantly impaired at free
recall. Moreover, examination of the individual order-
ing of the recalled items indicated that frontal patients
were not using subjective organizational strategies. That
is, whereas healthy control subjects had a tendency to
consistently group certain words together across
retrieval trials (for example, ‘spoon’ and ‘plate’), frontal
patients did so to a lesser degree, in essence recalling the
words in a more random fashion.

Another clue from neuropsychogical studies is
from patients who confabulate during remembering
by falsely recalling details of a memory (what
Moscovitch7 calls “honest lying”). For example, during
an interview, one patient with widespread frontal
damage7 was asked how long he had been married. He
answered: “About four months.” Then asked how
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many children he had, he responded,“Four … Not bad
for four months”, and later,“They’re adopted.”All four
children were his own, and he had been actively
involved in their lives for the previous 30 years. On stan-
dard tests of memory, another patient suffering right
frontal damage repeatedly endorsed new items incor-
rectly as having been studied earlier18,19. This behaviour-
al pattern is opposite to that typically observed in
memory loss, in which studied items are usually for-
gotten, and indicates difficulties in implementing an
appropriate retrieval strategy. From these findings, it is
possible to speculate that frontal cortex makes a contri-
bution to retrieval that includes implementation and
monitoring during the retrieval attempt.

HAEMODYNAMIC BRAIN-IMAGING STUDIES of memory
retrieval using both positron emission tomography
(PET) and functional magnetic resonance imaging
(fMRI) have almost ubiquitously shown activated
regions in frontal cortex, confirming suggestions of their
participation from neuropsychological studies. Other
regions of cortex have also been prominently activated
but, for our purposes, frontal regions are highlighted. A
prototypical series of studies was carried out by Buckner
et al.20 and Squire et al.21 using cued recall (see also REF. 22).
Before imaging, subjects studied words such as ‘couple’,
‘string’ and ‘abstain’. During imaging, the beginnings of
the words were presented (‘cou’, ‘str’ and ‘abs’) and the
subjects were instructed to recall the study words that
completed the stems. Activity changes occurred during
recall in multiple frontal regions, including posterior left
frontal cortex, extending into dorsolateral prefrontal cor-
tex and anterior frontal-polar cortex, near BRODMANN AREA

(BA) 10. Anterior frontal-polar activation also showed
selectivity — it was present during the recall task but
absent during additional conditions that required word
completion without remembering.

The basic finding of frontal activation has been
generalized to retrieval of sounds, pictures and faces,
and during MEMORY TESTS of cued recall, free recall and
simple recognition23–30,182 (for reviews, see REFS 31–36).
A considerable challenge has been to specify the pro-
cessing contributions of these frontal regions to
remembering. Some broad principles have emerged,
including the finding that multiple, distinct regions of
frontal cortex show functional dissociation during
remembering31 (FIG. 1).

In particular, posterior regions of frontal cortex near
left-lateralized BA 44/6, and more ventrally near BA
45/47, have a general role in elaborating on verbal
information that includes, but extends beyond, tasks
involving remembering, as described for the cued recall
task above. Demb and colleagues37 found activation of
these frontal regions during a task in which subjects
classified words as representing either abstract (‘free-
dom’) or concrete (‘anvil’) entities. Tasks involving
elaborate word generation, word classification, verbal
working memory and intentional memorization of ver-
bal material all activate these regions38–42. Remembering,
in many contexts, seems to tap into these processes. In a
similar manner, posterior right-lateralized regions of
frontal cortex become preferentially activated during
retrieval of non-verbal information43–45.

Posterior frontal participation during remember-
ing tracks the amount of cognitive effort exerted dur-
ing a retrieval attempt. As an act of remembering is
made more difficult by reducing the strength of the
original study episode, posterior frontal regions are
required to a greater extent22,46,47. In one study46, sub-
jects studied words under conditions of either highly
effective or minimal encoding that promoted high and
low levels of retrieval, respectively. Activity in left-lat-
eralized posterior frontal cortex was strongest when
subjects attempted to retrieve those words studied
under minimal encoding conditions, tracking the
amount of time (effort) that the retrieval trials
required. Posterior frontal regions are also activated
independently of whether or not remembering is suc-
cessful48,49. We can tentatively conclude that posterior
frontal regions provide general processing resources
for the strategic elaboration required during a retrieval
attempt. This role is similar to what has often been
termed ‘working memory’ or, in this context, ‘working
with memory’ (for a discussion of this issue, see REF. 50).
To the degree that a retrieval attempt is engaged, these
posterior frontal regions will be recruited. As the
retrieval attempt becomes more difficult, they will be
recruited more extensively.

Anterior frontal-polar cortex (near BA 10, often
right-lateralized) is also reliably activated during a
retrieval attempt, but its role differs from that of posteri-
or frontal cortex in several ways (FIG. 1). Relative to poste-
rior frontal cortex, frontal-polar cortex is more selective
for tasks that tap remembering, and is not always active
during elaborate verbal or non-verbal processing tasks51

(see also REFS 52,53). Moreover, frontal-polar cortex does
not show increased activity as individual retrieval
attempts become more effortful46 (but see REF. 21), but
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Figure 1 | Multiple, functionally distinct frontal regions
are active during retrieval attempt and monitoring. The
top figure shows two broad regions of frontal cortex that are
associated with retrieval attempt during a prototypical verbal
retrieval task, with colour representing distinct functional
properties, as outlined in the table below. Further functional
subdivisions of left frontal cortex have been made that are
not represented in the figure, including a prominent
distinction between more dorsal–posterior regions near
Brodmann area (BA) 44/6 and more ventral–anterior regions
near BA 45/47 (REFS 23,179,180).HAEMODYNAMIC IMAGING

METHODS

Techniques used to measure
neural activity by monitoring
changes in regional blood flow.
Positron emission tomography
(PET) measures blood flow
directly. Functional magnetic
resonance imaging (fMRI)
measures oxygen concentration
in the blood that relates to blood
flow. PET and fMRI have good
spatial resolution but relatively
poor temporal resolution.

BRODMANN AREAS

(BA). Korbinian Brodmann
(1868–1918) was an anatomist
who divided the cerebral cortex
into numbered subdivisions
based on cell arrangements,
types and staining properties
(for example, the dorsolateral
prefrontal cortex contains
subdivisions, including BA 44,
BA 45, BA 47 and others).
Modern derivatives of his maps
are commonly used as the
reference system for discussion
of brain-imaging findings.

MEMORY TESTS

Formats used to test explicit
retrieval in the laboratory vary
in relation to how much
information is provided to aid
retrieval. In free recall, items are
recalled in an open fashion
(“Recall the words from the
list.”). In cued-recall, item-by-
item aids are given as cues
(“Recall the word that began
with cou.”). In recognition, the
full item is given and the test is
to decide whether the item was
studied (“Was the word ketchup
presented earlier?”).



© 2001 Macmillan Magazines Ltd

Retrieval success
The goal of a retrieval attempt is to reconstruct a per-
ception of the past. If we assume that the structures dis-
cussed above relate in some way to strategic aspects of a
retrieval attempt, other brain regions probably support
information about whether retrieval has been successful
and the episode-specific contents of a memory.

Structures in the medial temporal lobes have been
repeatedly implicated in retrieving recently learned facts
and events61–63. In some studies, if a lesion is limited to
the hippocampus, the ability to remember episodes
seems to be selectively impaired, with a preserved ability
to retrieve general facts64. Brain-imaging studies have
intermittently shown hippocampal activation during
retrieval (for reviews see REFS 36,65–67), and have corre-
lated hippocampal activation with the level of retrieval
success68. Recently, a study by Eldridge et al.69 has indi-
cated selective activation of the hippocampus when
subjects report a distinct memory for an earlier episode,
as opposed to having a vague sense of familiarity (but
see REFS 28,70). On the basis of these kinds of observation
and animal studies of hippocampal lesions, several
models of retrieval have proposed that structures in the
medial temporal lobes rapidly bind neural representa-
tions associated with an experience to each other during
memory formation, and then, for a period of time fol-
lowing acquisition, function to reinstate those represen-
tations during retrieval71–74. Because a detailed account
of hippocampal participation in retrieval has recently
been published71, we focus this review on regions outside
the medial temporal lobes.

One open question has been whether there are neural
changes in neocortex that signal successful retrieval of
mnemonic information. During an act of remembering,
we are usually aware that items being recalled are from
the past and do not arise solely from our immediate sur-
roundings or de novo from our imagination. In experi-
mental settings, such neural changes might provide infor-
mation that is useful for deciding whether a presented
item is old or new on a recognition test. Habib and
Lepage75 explored neocortical changes associated with
retrieval success in a meta-analysis of PET data from five
studies. Across all included studies, measurements were
made during blocks of old items, as compared with new
items. Items were presented visually or aurally, and were
either words or pictures. Results showed a network of
brain areas, including left parietal cortex, medial parietal
cortex (near cuneus) and left anterior frontal cortex, near
the frontal-polar region discussed above, that responded
more to the blocks of old items.

Event-related fMRI studies have extended these obser-
vations by allowing individual items correctly identified
as old (hits) to be compared with items correctly identi-
fied as new. This comparison directly targets processes
associated with retrieval success. Several fMRI stud-
ies28,49,55,76,77 have identified the same basic network as
reported by Habib and Lepage75, and particularly high-
lighted the role of left parietal cortex (FIG. 2). Moreover,
activity in this network has been shown to predict, on
average, whether a subject will correctly identify an old
item on a recognition test78, and is sometimes present for

could be modulated by the subject’s expectations54.
Activity in frontal-polar cortex generalizes across
retrieval of verbal and non-verbal information, tending
to be right-lateralized even for verbal material31,34,43.
Finally, frontal-polar cortex shows atypically long
responses in EVENT-RELATED FMRI studies48,55,56 that might
have correlates in brain electrical activity as measured by
ELECTROENCEPHALOGRAPHY (EEG)57,58.

These counterintuitive properties have stumped any
simple interpretation. One possibility is that frontal-
polar cortex provides ongoing monitoring during the
attempt to retrieve29,55,57,59. Alternatively, anterior
frontal-polar cortex might contribute to the high-level
monitoring required when a task demands multiple
sub-goal processes. That is, certain kinds of task require
dynamic navigation between multiple goals52.
Remembering might inherently rely on this form of
processing, with the rememberer continuously navigat-
ing between information provided by cues present in
the environment and representations constructed from
memory (see also REFS 7,60).

In summary, the above results indicate that frontal
regions participate in strategic aspects of retrieval attempt
with specific, dissociated regions making distinct 
contributions.
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Figure 2 | Parietal cortex is associated with retrieval success. a | The basic experimental
paradigm used to study retrieval success. Subjects are asked to recognize previously studied old
and new words. Those items correctly remembered as old are directly compared with rejected
new items to determine correlates of retrieval success. b | Functional magnetic resonance
imaging (fMRI) data from REF. 49 show differential activation associated with success over multiple
brain regions, prominently including left parietal cortex (arrow). c | Event-related potential (ERP)
studies have identified a related effect, showing a rapid positive waveform that develops over left
parietal sites during remembered old items (red) as compared with new items (green). Reprinted
with permission from REF. 3 © 2000 Elsevier Science. The correspondence between the fMRI and
ERP findings is intriguing, but should be entertained cautiously as their properties differ in certain
regards (for example, contrast REF. 76 with REF. 181).

EVENT-RELATED FMRI

A variant of functional magnetic
resonance imaging (fMRI)
methods that allows neural
correlates of individual trials or
classes of trials to be isolated and
compared.

ELECTROENCEPHALOGRAPHY

(EEG).A technique used to
measure neural activity by
monitoring electrical signals
from the brain that reach the
scalp. EEG has good temporal
resolution but relatively poor
spatial resolution.
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ories varied depending on the region of cortex stimulat-
ed. Regions of superior and middle temporal lobes were
associated with auditory memories (“I hear singing …
Yes, it is White Christmas”) whereas regions of more
posterior temporal and occipital lobes were associated
with visual memories (“… I saw someone coming
toward me as if he were going to hit me”). Although cer-
tain aspects of these early studies have been re-exam-
ined102,103, they provided initial evidence for the idea that
cortical regions associated with sensory processing are
also associated with memory processes.

Crucial insights into brain regions supporting mem-
ory representation have come from studies of mental
imagery. In a typical imagery study, subjects are asked to
imagine what an object or place looks like from their
general knowledge (for example,“Picture an elephant in
your mind”or “Picture the letters in the word HOUSE”).
In other studies, participants are asked to construct
images based on specific, recently learned stimuli, paral-
leling in many ways an act of remembering. For these
reasons, findings from studies putatively targeting
imagery relate closely to those exploring remembering of
content-specific information. Furthermore, behavioural
analyses of imagery tasks have long indicated similarities
between imagery-based retrieval and stimulus-based
perception104–106 (see also REF. 87).

Assessments of visual mental imagery ability in
patients with damage to visual cortex support the possi-
bility that brain regions involved in perception are also
used during imagery and remembering107–111. Patients
with deficits in perceiving certain stimulus properties,
such as colour, form or spatial location, can also have
deficits in their ability to imagine that information when
given verbal instructions108,110,111. These differing stimulus
properties are probably represented in different regions
of visual cortex. For instance, Farah et al.109 showed that
bilateral damage to temporal–occipital cortex resulted in
decreased ability to imagine specific object features such
as colour and size, but preserved imagery for spatial fea-
tures such as mental rotation and scanning. These two
components of visual information are processed in sepa-
rate (but highly interconnected) visual processing
streams, with visual object information processed pri-
marily in ventral occipital and temporal cortex, and spa-
tial information processed primarily in dorsal occipital
and parietal cortex112,113.

However, the extent to which sensory regions sub-
serve both perceptual and retrieval processes is not
entirely clear from the neuropsychology literature.
Several individuals with brain damage have been
described, who  show impaired visual mental imagery,
but relatively preserved stimulus-based perceptual pro-
cessing114. The opposite dissociation has also been
observed. Bartolomeo et al.115 describe a woman with
bilateral temporal–occipital lesions presenting a variety
of visual processing impairments, including agnosia
(the inability to recognize objects) and prosopagnosia
(the inability to recognize faces), but who could imag-
ine both objects and faces. This patient, remarkably,
could draw objects from memory, but failed to perceive
their identity when presented with them at a later time

old items, even when a recognition decision is not
required76,79. Event-related potential (ERP) studies
comparing remembered old items with new items have
shown a relatively fast (onset ~400 ms) positive wave-
form over left parietal cortex that is present for remem-
bered items and might parallel certain properties of the
fMRI findings80 (for review, see REF. 58) (FIG.2). Across
these studies, words, pictures and sounds have been
used as stimuli, implying that the network participates
generally in retrieval success. So, its participation in
retrieval is either not dependent on the episode-specific
contents of a memory, or signals the retrieval of
abstract forms of information that generalize across
numerous retrieval contexts.

These collective findings indicate a relatively fast signal
in left parietal and associated cortex that correlates with
retrieval success. One speculation is that activity in these
cortical regions informs a person that something is from
the past. It will be important to determine, in future stud-
ies, whether these cortical correlates of retrieval success
are dependent on intact medial temporal structures and
how findings integrate across methods. For example, an
open question surrounds whether lesions affecting these
left parietal regions that are associated with retrieval suc-
cess lead to changes in memory function.

Retrieval content
The identification of cortical regions that provide a
general signal associated with retrieval success raises
the separate question of how the brain represents the
episode-specific contents of a memory. Recollective
experience can include, for example, the face of a
recently introduced person, the sound of his or her
voice, and the topic of the conversation. Recent theo-
ries have indicated that regions controlling the strate-
gic aspects of retrieval, such as those discussed earlier,
are distinct from those that represent the remembered
information81–84 (see also REF. 85), but the general con-
cept of top–down control is not new1. There is consid-
erable evidence from a variety of experimental ap-
proaches that certain regions of the brain that process
incoming (bottom–up) perceptual information are
also involved in representing that information during
remembering84,86–96. We refer to this process as ‘reacti-
vation’, similar to what William James1 called ‘re-exci-
tation’, as information associated during memory for-
mation is reactivated during retrieval (see also REF. 97).
The notion of reactivation also shares similarities with
the more recent cognitive theoretical framework of
transfer-appropriate processing, which postulates that
memory performance is influenced by the overlap
between the specific processes engaged during memory
formation and retrieval98–100.

Early evidence that sensory regions are associated
with memory retrieval was obtained by Wilder Penfield
and Phanor Perot101. Penfield electrically stimulated
regions of exposed cortex in awake human patients
undergoing surgery for epilepsy, and found that stimu-
lation of regions of occipital and temporal cortex would
sometimes elicit memories (as verified by the patient or
by witness), and that the sensory modality of the mem-
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(see also REFS 115–118). These findings indicate that per-
ceptual and retrieval systems do not completely overlap,
but do not address the extent to which they might share
certain levels of neural representation.

EEG studies of retrieval tasks also support a reactiva-
tion hypothesis86,119–121. These studies indicate that neural
activity in posterior regions of the brain increases when
people remember detailed perceptual information. For
example, Rösler et al.121 asked subjects to learn associa-
tions between pictures and spatial locations, pictures and
colours, and pairs of words. Subsequent EEG recordings
during memory tests showed maximal responses over
left frontal regions during word retrieval, parietal regions
during spatial location retrieval, and occipital and tem-
poral regions during colour retrieval. These results indi-
cate that different regions were reactivated depending on
the type of information retrieved.

Strong evidence for reactivation of sensory-specific
cortex during retrieval comes from studies using PET
and fMRI. Many studies in which subjects retrieve visu-
al information result in activity increases in occipital
and temporal cortex88,95,122–136, whereas retrieval of audi-
tory information results in increased activity in superior
and middle temporal cortex91,95,96,137,138 (see also REF. 139).
Wheeler et al.95 asked subjects to study a set of picture
and sound items extensively over several days, then test-
ed them on a SOURCE MEMORY TASK in which the subjects
were told to vividly recall the items and indicate
whether they had been studied as pictures or sounds. A
subset of cortical regions that were selectively activated
during perception of pictures and sounds were also reac-
tivated during retrieval of the same forms of informa-
tion (FIG. 3). A left-lateralized region along the fusiform
gyrus was associated with both perception and retrieval
of picture information, whereas bilateral superior tem-
poral regions were associated with both perception and
retrieval of sounds. A recent PET study showed that
reactivation might extend to the motor system140.
Subjects remembered study episodes in which physical
actions were performed. During retrieval of these
action-associated events, activation increased in regions
of the motor system. In addition, many of these studies
report involvement of frontal and/or parietal regions
during retrieval, lending support to the idea that the
regions involved in retrieval attempt interact with sen-
sory and motor regions that are reactivated depending
on specific memory content.

Evidence for cortical representation of retrieval con-
tent comes from SINGLE-UNIT RECORDINGS during paired-
associate retrieval tasks in monkeys90,94,141,142 and imagery
recall tasks in humans89. During paired-associate recall,
one stimulus is arbitrarily made to predict another.
Because single-unit responses in certain visual areas can
be highly selective for specific visual stimuli, single-unit
recordings can be characterized in terms of their respon-
siveness to presented stimuli versus those absent but
associated through learning. Sakai and Miyashita94 (see
also REF. 90) tested PAIRED-ASSOCIATE RECALL, and found ‘pair-
recall’ neurons in inferior temporal cortex, the activity of
which increased in the absence of their optimal stimuli if
cues were presented that had been associated with their
optimal stimuli during learning (FIG. 4). Although not all
studies have found such effects143,144, these results indi-
cate a mechanism, at the level of individual cell ensem-
bles, that might contribute to the representation of
specific visual context during remembering.

How specific is controlled reactivation during
remembering? Human fMRI studies are particularly
appropriate for this question, because they can simulta-
neously survey indirect correlates of neuronal activity
across multiple, distributed cortical regions in a sensory
modality. Several recent fMRI studies in humans indi-
cate a relatively high degree of specificity during reacti-
vation. Ishai and colleagues127 identified separate
regions of ventral visual cortex showing category-pref-
erential fMRI activity increases in response to faces,
houses and chairs during perception. Recall on the basis
of imagining these objects produced significant increases
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Figure 3 | Subsets of regions activated during perception
are reactivated during vivid remembering. A paradigm
used to explore modality-specific reactivation. Subjects study
words paired with either sounds or pictures (example shows a
picture trial). At test, subjects are asked to remember whether
the words had been previously associated with pictures or
sounds,encouraging retrieval of vivid, modality-specific
memories. Brain images based on functional magnetic
resonance imaging (fMRI) show regions of the brain active
during perception of pictures (a) and sounds (b), and
subsequently during retrieval of the same pictures (c) and
sounds (d) from memory. Perception resulted in increased
activity in visual cortex (from calcarine to fusiform gyrus) for
pictures, and from auditory cortex (near Heschl’s gyrus to
middle temporal gyrus) for sounds. Retrieval of pictures from
memory was associated with reactivation of visual cortex near
fusiform gyrus, whereas retrieval of sounds was associated with
bilateral superior temporal gyrus near secondary auditory
regions. These results indicate that certain regions of sensory
cortex associated with perception are differentially reactivated
during retrieval of that information. Reproduced with permission
from REF. 95 © 2000 National Academy of Sciences, USA.

SOURCE MEMORY TEST

A form of explicit retrieval test
in which a specific attribute of
the study episode is queried
(“Was the dog studied as a
sound or picture?”).

SINGLE-UNIT RECORDING

A method used to measure the
activity of individual neurons in
awake, behaving animals. This
method has excellent spatial and
temporal resolution, but can
only survey activity over small
numbers of neurons.

PAIRED-ASSOCIATE RECALL

A form of retrieval test in which
item pairs are studied
(“dog–cat”). At test, one member
of the pair is given to cue
retrieval of the other (“dog”).
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retrieved information) and differences in individual abili-
ties might account for the discrepant results123,128,147.

Roland and Gulyás92, and Hebb148, have suggested that
it is sometimes unnecessary to recruit early sensory
regions to recall information represented at later stages of
the sensory processing hierarchy. That is, to remember
what a dog looks like, it might be sufficient for retrieval
processes to reactivate late visual regions in which neu-
ronal activity codes the object representations of the dog,
and not earlier regions in which activity codes more
primitive visual attributes. This hypothesis is appealing,
because it suggests efficiency in the systems subserving
retrieval content. Reactivation processes cascade back-
wards through sensory processing areas as is required to
represent the level of sensory detail in a memory, much as
qualitatively different regions can be preferentially recruit-
ed as indicated by the studies discussed earlier127,134 (but
see REFS 128,149). It is also possible that increases in activity
in visual and auditory cortex during retrieval tasks are
modulated, to some degree, by attentional shifts in base-
line neural activity122,150–156 that interact with processes
associated with the retrieval of specific stimuli.

Research into the neural mechanisms underlying
retrieval content faces a final, difficult challenge.
Memory content extends beyond simple sensory details
of an original episode to include abstracted forms of
representation, such as verbally mediated thoughts,
emotional content and even a sense of the personal per-
spective of the rememberer. Prominent theories have
noted that these abstract forms of representation are
central to the experience of remembering1,4. Unfor-
tunately, we are largely unaware of their neural bases
(but see REFS 35,157–159). Nonetheless, the basic princi-
ples learned from the above discussions of how sensory
details are remembered might extend to other forms of
information. That is, sensory systems present the most
approachable targets for initial exploration of retrieval
content, because their properties are relatively well
understood. However, their contributions to remem-
bering probably represent only a fraction of the overall
distributed network reactivated during retrieval.
Frontal and temporal regions might reactivate to sup-
port the verbal and verbally mediated semantic con-
tents of memories, the amygdala might participate in
the emotional content160, and so on. Collectively, these
widely distributed representations reactivated during
remembering might convey the vividness and richness
that is experienced.

Integration during remembering
From the perspective of the rememberer, processes
associated with retrieval attempt and their various
products are probably experienced as one integrated
memory4. The discussions above focus on manipula-
tions that pull apart component processes of remem-
bering, and provide us with some insight into their dis-
tinct properties. A remaining challenge is to understand
how the component parts orchestrate an entire act of
remembering. It seems likely that the separate processes
discussed earlier, and their neural mechanisms, act
interdependently during retrieval. In this regard, a

in activity across these regions. Importantly, the regions
most associated with perception of one category were
also most associated with imagery from that category
(FIG. 5). In another study, O’Craven and Kanwisher134

found a similar dissociation using faces and buildings.
Recalling the images of famous faces (cued by their
names) reactivated a portion of fusiform gyrus that was
preferentially associated with perceiving faces, whereas
recalling familiar buildings reactivated a portion of the
medial temporal lobes, the parahippocampal gyrus, that
was associated with perceiving those same buildings. On
a trial-by-trial basis, activity in fusiform and parahippo-
campal gyri could often predict whether the subject was
imagining a face or a building. Kreiman et al.89 showed
similar predictability for the specific visual content of a
memory based on recordings from individual neurons in
humans undergoing brain surgery.

The extent to which retrieval signals traverse the visual
system during remembering, from later to earlier process-
ing areas, is also a topic of debate. Results from several
studies have indicated that reactivation effects can reach as
far back as calcarine cortex, at or near primary visual cor-
tex (the earliest processing stage in the cortical visual sys-
tem)123,128,130,131,135,145,146. One fMRI study, in which subjects
imagined the appearance of visual objects they might
encounter while walking though their hometowns, even
indicated reactivation of the thalamic region supplying
inputs to primary visual cortex (the lateral geniculate
nucleus) during visual recall123. On the other side of the
debate, many studies indicate that retrieval of detailed
visual30,88,95,124,125,127,132,133 and auditory91,95,96,137 information
can take place without robust activity in early sensory cor-
tex. Experimental methodology (for example, choice of
control task), task demands (for example, detail of the
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Figure 4 | Paired-associate recall tasks in monkeys might indicate single-unit correlates
of reactivation. The left panel shows diagrams of the ventral surface of the monkey brain showing
area TE of the temporal lobe, in which recordings were made (red). On the right are recordings from
a neuron that responds preferentially to a specific stimulus. The bottom graph shows the response
in this neuron when a non-optimal stimulus is presented that had been paired, during learning, with
the cue-optimal stimulus. The neuron’s activity does not show an initial response to the non-
optimal cue, but does show a slowly developing response to the retrieved stimulus that might
reflect a neuronal correlate of reactivation for the paired-associate. Adapted with permission from
REF. 90 © 2001 American Association for the Advancement of Science.
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neural basis of remembering could arise, given the avail-
able data. Extending this tentative model, it is also possi-
ble to speculate on how certain closely related cognitive
experiences could differ from remembering.

An important distinction in cognitive theories of
memory retrieval is between remembering and know-
ing161,162, or the related distinction between RECOLLEC-

TION AND FAMILIARITY163,164 (see also REF. 5). Decisions
about whether something is old or new are not always
supported by a fully developed recollective experi-
ence. Behaviourally, the distinction is often tested in
the ‘remember–know’ procedure, in which subjects
are given the opportunity to indicate whether a cor-
rectly identified old item is simply known to be old, or
whether specific details associated with the item’s
original presentation can be remembered162. In mem-
ory tests, items are often correctly identified as being
old because of a vague sense of familiarity. This cogni-
tive distinction might capture the degree to which
retrieval content has been achieved during the process
of retrieval — a distinction that yields qualitatively
different retrieval experiences. In situations in which
parietal and frontal regions signal that a perception is
from the past, concurrent with reactivation of senso-
ry-specific and other cortex associated with retrieval
content, the experience will be recollection. When
brain regions signal that a perception is from the past
with minimal reactivation of cortex supporting re-
trieval content, the experience will be devoid of the
richness of a fully formed memory and experienced as
familiarity.

tentative model can be constructed on the basis of
available data that describes how an act of remembering
might proceed.

During successful remembering, top–down modu-
lation from frontal cortex probably interacts with pos-
terior neural representations of environmental cues to
trigger reactivation of the cortical networks that repre-
sent a memory. The medial temporal lobe probably is
required for certain forms of reactivation, perhaps
through its parallel role in the rapid initial binding of
information into new cortical networks. As informa-
tion reflecting mnemonic representations is realized,
cortical networks involving parietal and frontal regions
contribute to a general signal indicating that informa-
tion is old. Concurrently, reactivation of the domain-
specific contents of a memory draw on later stages of
sensory processing that also encode such information
during sensory and imagery processing. For example,
visual regions in inferior temporal cortex will be reac-
tivated to support the visual contents of the memory.
Other regions, as yet poorly understood, support
abstract and verbal forms of retrieval content. It is
also likely that frontal cortex participates in the ongo-
ing evaluation of the emerging products of the
retrieval attempt, and that the above processes are
extended, depending on the successes and goals of the
retrieval event. The operations of these interactive
processes are phenomenologically experienced as
remembering.

The above model is incomplete and unlikely to be
correct in all details, but nonetheless illustrates how the
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Figure 5 | Regions of visual cortex that respond preferentially to different kinds of objects during perception show
similar preference during imagery of those objects. a | Bilateral regions of ventral temporal cortex show modulation of activity
during perception of houses, faces and chairs. Within this general region, certain regions show preferential responses for the
different object classes. Perception of houses is differentially associated with increased activity in medial fusiform gyrus (green),
faces with lateral fusiform gyrus (red) and chairs with inferior temporal gyrus (blue). b | Modulation of activity during visual imagery
of houses (green), faces (red) and chairs (blue) is associated with regions preferentially activated during perception of each stimulus
form. Such specificity during imagery indicates that regions specialized for processing certain types of information during
perception might also, to some extent, be involved in reconstructing that information during retrieval. Reproduced with permission
from REF. 127 © 2000 Elsevier Science.
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episodes in a manner similar to how selective attention
modulates perception of externally presented stimuli.
Slow-wave EEG recordings57 and mixed-model event-
related fMRI designs168 provide new tools that can sepa-
rate the neural correlates of ongoing mode-related
processes from transient neural changes associated with
individual retrieval events.As another example, it is wide-
ly believed that acts of remembering unfold over time,
with dynamic temporal interactions between brain
regions having a central role. Glimpses into the temporal
orchestration of retrieval processes have come from stud-
ies using EEG80,169,170 and single-unit recordings across
multiple brain regions90. In addition, network analysis of
brain-imaging data has indicated interactions between
regions during remembering136,171,172. Methods that com-
bine techniques, such as methods based on electrical
activity (magnetoencephalography and EEG) and
haemodynamic methods (fMRI and PET)173–175, provide
considerable potential for widespread characterization of
the dynamic processes associated with remembering. A
recent study has shown that it is possible simultaneously
to record single-unit activity and fMRI responses in mon-
keys, providing another powerful tool for combining
methods with different spatial and temporal properties176.

Second, theories of remembering have often been
explored in relative isolation from other fields of cogni-
tive neuroscience. To fully understand the contribution
of a brain region or set of brain regions to remember-
ing, it will be important to integrate studies across sub-
ject areas. An obvious example relates to retrieval con-
tent. Numerous studies have explored imagery and
perception. It would seem parsimonious that the role of
a brain region in more than one kind of task derives
from a common process that is utilized across tasks.
That is, understanding a brain region’s role in visual
perception might clarify its contribution to remember-
ing. A similar idea applies to those brain regions dis-
cussed in terms of strategic aspects of retrieval.
Contributions of frontal cortex are not selective to
remembering38,42,43,177,178. By fully understanding how
frontal regions guide executive control processes across
multiple kinds of task, such as those classically defined
as working memory tasks, we will gain insight into their
fundamental processing contributions and how these
processes control remembering.

Conclusions and future directions
Cognitive neuroscientific exploration into remembering
is just beginning, and goes forward with an array of
methods that can link neural systems to the cognitive
phenomenon associated with remembering. We have
provided a summary of recent findings that seem to
indicate: first, specific dissociable regions of frontal cor-
tex are involved in strategic aspects of retrieval attempt
and monitoring; second, parietal and frontal regions
provide a general signal of retrieval success, perhaps
indicating that information is old; and last, regions
within sensory cortex reactivate to provide memory
content during remembering. The picture is still rather
murky and the data are incomplete.

Several large gaps in understanding remain. One
important future direction for research is to target how the
neocortical processes described above interact with medial
temporal regions that are associated with memory forma-
tion and retrieval.For example, to what degree do neocor-
tical correlates of retrieval success depend on the integrity
of the medial temporal lobe? If they do, how do medial
temporal structures enable these neocortical signals to be
associated with retrieval success? Answers to these ques-
tions might be clinically useful.Alzheimer’s disease can be
predicted on the basis of structural changes within the
medial temporal lobe165,166, and many believe that func-
tional changes precede the gross structural changes by
several years. One strategy to detect the earliest stages of
dementia has been to measure medial temporal activity
during memory processes using brain-imaging meth-
ods167. However, structures within the medial temporal
lobe are relatively small and have been a difficult challenge
for imaging. If specific neocortical correlates of remem-
bering depend on the integrity of medial temporal lobe
function, these correlates might provide powerful mark-
ers for medial temporal lobe function, and their measure-
ment might predict the progression of dementia.

Significant future progress is also likely to increase the
sophistication of the link between neural correlates and
cognitive theories of remembering. Two distinct gaps can
be identified in this area. First, ideas about the component
cognitive processes involved in remembering have
advanced beyond simple distinctions between retrieval
attempt and retrieval content1–9, and the methods that
can distinguish between these more detailed processes are
just now being developed. In this regard, we can expect to
see significant progress as new methods are adopted. For
example, many theories of remembering propose that
adopting a preparatory cognitive state serves as a founda-
tion for individual recollective experiences — what has
often been termed ‘retrieval mode’4. Retrieval mode
might operate in the context of remembering past
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